Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-30T15:40:09.624Z Has data issue: false hasContentIssue false

Effects of Ion Implantation on Crystallization of Amorphous CoSi2

Published online by Cambridge University Press:  25 February 2011

Q. Z. Hong
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
K. Barmak
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015
S. Q. Hong
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
L. A. Clevenger
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The effects of Si and Kr ion implantation on the crystallization kinetics of amorphous COSi2 have been investigated by differential scanning calorimetry and in situ sheet resistance measurement. Without ion implantation, the crystallization of coevaporated COSi2 is characterized by three dimensional growth from preexisting nuclei. When the as-deposited COSi2 is implanted with Si or Kr ions at liquid nitrogen temperature, the kinetics of the subsequent crystallization is significantly altered. A 180 keV 5×1015 cm−2Si ion implantation increases the crystallization temperature by 34°C. When the Si dose is below 1×1015 cm−2, ion implantation causes a sharp decrease in the crystallization kinetic parameter defined by the Avrami equation. The amount of decrease is shown to scale with the deposited nuclear energy. At higher doses, the kinetic parameter continues to decrease with increasing dose but at a much reduced rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cros, A., Tu, K. N., Smith, D. A., and Weiss, B. Z., Appl Phys. Lett. 52, 1311 (1988).Google Scholar
2. Smith, D. A., Tu, K. N., and Weiss, B. Z., Ultramicroscopy 30, 90 (1989).CrossRefGoogle Scholar
3. Hong, Q. Z., Barmak, K., and Clevenger, L. A., J. Appl Phys. 72, 3423 (1992).Google Scholar
4. Im, J. S., Shin, J. H., and Atwater, H. A., Appl Phys. Lett. 59, 2314 (1991).Google Scholar
5. Allen, C. W. and Smith, D. A., Mat. Res. Soc. Symp., Proc. 201, 405 (1991).Google Scholar
6. Biersack, J. P. and Haggmark, L. J., Nucl. Instr. Methods 174, 257 (1980).Google Scholar
7. Ridgway, M. C., Elliman, R. G., Thornton, R. P., and Williams, J. S., Appl Phys. Lett. 56, 1992 (1990).CrossRefGoogle Scholar
8. Hewett, C. A., Suni, I., Lau, S. S., Hung, L. S., and Scott, D. M., Mat. Res. Soc. Symp. Proc. 27, 145 (1984).Google Scholar