Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-03-02T01:04:37.825Z Has data issue: false hasContentIssue false

Effects of clustering and dimensionality on the magnetic properties of diluted magnetic semiconductors

Published online by Cambridge University Press:  01 February 2011

R. N. Bhatt
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
Malcolm. P. Kennett
Cavendish Laboratories, University of Cambridge, Madingley Rd, Cambridge CB3 OHE, UK.
Adel Kassaian
Department of Physics and Astronomy, University of British Columbia, Van couver, BC V6T 1Z1, Canada.
Get access


The magnetic properties of films of diluted magnetic semiconductors (DMS) such as (Ga,Mn)As, as well as bulk grown crystals of similar materials, have been found to be extremely sensitive to growth conditions, both in terms of the ferromagnetic transition temperature, and the details of their magnetization curves. We study an impurity band model for carriers in Mn-doped DMS applicable in the low carrier density regime, and discuss the effects of clustering on the magnetic properties of DMS, using both numerical mean field and Monte Carlo simulations. In addition, we study the effects of dimensionality on the transition temperature and other magnetic behaviour, and compare our results with experimental data.

Research Article
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Prinz, G., Science 282, 1660 (1998);Google Scholar
Ohno, H., Science 281, 951 (1998);Google Scholar
Pearton, S. J., Abernathy, C. R., Norton, D. P., Hebard, A. F., Park, Y. D., Boatner, L. A., and Budai, J. D., Mat. Sci. Eng. R 40, 137 (2003).Google Scholar
2. Ohno, H. and Matsukura, F., Solid State Commun. 117, 179 (2001).Google Scholar
3. Edmonds, K. W., Yang, K. Y., Campion, R. P., Neumann, A. C., Farley, N. R. S., Gallagher, B. L., and Foxon, C. T., Appi. Phys. Lett. 81, 4991 (2002).Google Scholar
4. Ku, K. C., Potashnik, S. J., Wang, R. F., Chun, S. H., Schiffer, P., Samarth, N., Seong, M. J., Mascarenhas, A., Johnston-Halperin, E., Myers, R. C., Gossard, A. C, and Awschalom, D. D., Appi. Phys. Lett. 82, 2302 (2003).Google Scholar
5. Nazmul, A. M., Sugahara, S., and Tanaka, M., Phys. Rev. B 67 241308(R) (2003).Google Scholar
6. Potashnik, S. J., Ku, K. C., Chun, S. H., Berry, J. J., Samarth, N., and Schiffer, P., Appi. Phys. Lett. 79, 1495 (2001).Google Scholar
7. Theodoropoulou, N., Hebard, A. F., Chu, S. N. G., Overberg, M. E., Abernathy, C. R., Pearton, S. J., Wilson, R. G., and Závada, J. M., Appi. Phys. Lett. 79, 3542 (2001).Google Scholar
8. Cho, S. G., Choi, S., Hong, S. C., Kim, Y., Ketterson, J. B., Kim, B. J., Kim, Y. C., and Jung, J. H., Phys. Rev. B 66, 033303 (2002).Google Scholar
9. Park, Y. D., Hanbicki, A. T., Erwin, S. C., Hellberg, C. S., Sullivan, J. M., Mattson, J. E., Ambrose, T. F., Wilson, A., Spanos, G., and Jonker, B. T., Science 295, 651 (2002).Google Scholar
10. Sato, K., Medvedkin, G. A., Nishi, T., Hasegawa, Y., Misawa, R., Hirose, K., and Ishibashi, T., J. Appl. Phys. 89, 7027 (2001).Google Scholar
11. Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., and Ohtani, K., Nature 408, 944 (2000).Google Scholar
12. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
13. König, J., Lin, H.H., and MacDonald, A. H., Phys. Rev. Lett. 84, 5628 (2000).Google Scholar
14. Berciu, M. and Bhatt, R. N., Phys. Rev. Lett. 87, 107203 (2001).Google Scholar
15. Chattopadhyay, A., Das Sarma, S., and Millis, A. J., Phys. Rev. Lett. 87, 227202 (2001).Google Scholar
16. Sanvito, S., Hill, N. A. and Ordejón, P., Phys. Rev. B 63, 165206 (2001).Google Scholar
17. Kaminski, A. and Das Sarma, S., Phys. Rev. Lett. 88, 247202 (2002).Google Scholar
18. Zarand, G. and Janko, B., Phys. Rev. Lett. 89, 047201 (2002).Google Scholar
19. Sanvito, S. and Hill, N. A., Appl. Phys. Lett. 78, 3493 (2001).Google Scholar
20. Yu, K. M., Walukiewicz, W., Wojtowicz, T., Kuryliszyn, I., Liu, X., Sasaki, Y., and Furdyna, J. K., Phys. Rev. B 65, 201303 (2002).Google Scholar
21. Erwin, S. C. and Petukhov, A. G., Phys. Rev. Lett. 89, 227201 (2002).Google Scholar
22. Dietl, T., Ohno, H., and Matsukura, F., Phys. Rev. B 63. 195205 (2001).Google Scholar
23. Bhatt, R. N., Berciu, M., Kennett, M. P., and Wan, X., J. Supercond. 71, 15 (2002).Google Scholar
24. Schliemann, J., König, J., and MacDonald, A. H., Phys. Rev. B 64, 165201 (2001).Google Scholar
25. Chudnovskiy, A. L. and Pfannkuche, D., Phys. Rev. B 65, 165216 (2002).Google Scholar
26. Yang, S. R. E. and MacDonald, A. H., Phys. Rev. B 67, 155202 (2003).Google Scholar
27. Bouzerar, G., Kudrnovsky, J., Bergqvist, L., and Bruno, P., Phys. Rev. B 68, 081203 (2003).Google Scholar
28. Priour, D. J., Hwang, E. H., and Das Sarma, S., cond-mat/0305413.Google Scholar
29. Timm, C., cond-mat/0311029.Google Scholar
30. Kennett, M. P., Bercili, M., and Bhatt, R. N., Phys. Rev. B 66, 045207 (2002).Google Scholar
31. Kawikami, R. K., Johnston-Halperin, E., Chen, L. F., Hanson, M., Guebels, N., Speck, J. S., Gossard, A. C., and Awschalom, D. D., Appl. Phys. Lett. 77, 2379 (2000).Google Scholar
32. Halperin-Johnston, E., Schuller, J. A., Gallinat, C. S., Kreutz, T. C., Myers, R. C., Kawakami, R. K., Knotz, H., Gossard, A. C., and Awschalom, D. D., Phys. Rev. B 68, 165328 (2003).Google Scholar
33. Mathieu, R., Svedlindh, P., Sadowski, J., Światek, K., Karlsteen, M., Kański, J., and Uver, L., Appl. Phys. Lett. 81, 3013 (2002).Google Scholar
34. Boselli, M. A., da Cunha Lima, L C., and Ghazali, A., Phys, Rev. B 68, 085319 (2003).Google Scholar
35. Kreutz, T. C., Zanelatto, G., Gwinn, E. G., and Gossard, A. C., Appl. Phys. Lett. 81, 4766 (2002).Google Scholar
36. Fernández-Rossier, J. and Sham, L. J., Phys. Rev. B 66, 073312 (2002); Phys. Rev. B 64, 235323 (2001).Google Scholar
37. Vurgaftman, I., and Meyer, J. R., Phys. Rev. B 64, 245207 (2001).Google Scholar
38. Sanvito, S., Phys. Rev. B 68, 054425 (2003).Google Scholar
39. Kreutz, T. C., Gwinn, E. G., Artzi, R., Naaman, R., Pizem, H., and Sukenik, C. N., Appl. Phys. Lett. 83, 4211 (2003).Google Scholar
40. Rüster, C., Borzenko, T., Gould, C., Schmidt, G., Molenkamp, L. W., Liu, X., Wojtowicz, T. J., Furdyna, J. K., Yu, Z. G., and Flatté, M. E., Phys. Rev. Lett. 91, 216602 (2003).Google Scholar
41. Lyu, P. and Moon, K., cond-mat/0210643.Google Scholar
42. Okabayashi, J., Kimura, A., Rader, O., Mizokawa, T., Fujimori, A., Hayashi, T., and Tanaka, M., Physica E (Amsterdam) 10, 192 (2001).Google Scholar
43. Okabayashi, J., Kimura, A., Rader, O., Mizokawa, T., Fujimori, A., Hayashi, T., and Tanaka, M. Phys. Rev. B 64, 125304 (2001).Google Scholar
44. Asklund, H., Uver, L., Kański, J., Sadowski, J., and Mathieu, R., Phys. Rev. B 66, 115319 (2002).Google Scholar
45. Singley, E. J., Burch, K. S., Kawikami, R., Stephens, J., Awschalom, D. D., and Basov, D. N., Phys. Rev. B 68, 165204 (2003).Google Scholar
46. Chadi, D. J., Phys. Rev. B 16, 3572 (1977);Google Scholar
Chadi, D. J., Phys. Rev. B 19, 2074 (1979).Google Scholar
47. Zhou, C., Kennett, M. P., Wan, X., Berciu, M., and Bhatt, R. N., cond-mat/0310322.Google Scholar
48. Berciu, M. and Bhatt, R. N., cond-mat/0111045.Google Scholar
49. Mermin, N. D. and Wagner, H., Phys. Rev. Lett. 17, 1133 (1966).Google Scholar
50. Beschoten, B., Crowell, P. A., Malajovich, L, Awschalom, D. D., Matsukura, F., and Ohno, H., Phys. Rev. Lett. 83, 3073 (1999).Google Scholar
51. Bhatt, R. N. and Wan, X., Int. J. Mod. Phys. C 10, 1459 (1999);Google Scholar
Wan, X. and Bhatt, R. N., cond-mat/0009161.Google Scholar
52. Mayr, M., Alvarez, G., and Dagotto, E., Phys. Rev. B 65, 241202(R) (2002).Google Scholar
53. Kennett, M. P., Berciu, M., and Bhatt, R. N., Phys. Rev. B 65, 115308 (2002).Google Scholar
54. Das Sarma, S., Hwang, E. H., and Kaminski, A., Phys Rev. B 67, 155201 (2003).Google Scholar