Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-mhx7p Total loading time: 0.203 Render date: 2022-05-21T16:47:26.399Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Effect of SWCNT Dilution on the Resistivity of MgB2

Published online by Cambridge University Press:  15 April 2013

Danhao Ma
Affiliation:
Department of Energy Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Ruwantha Jayasingha
Affiliation:
Department of Physics & Astronomy, University of Louisville, Louisville, KY 40292, U.S.A.
Dustin Hess
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Kofi W. Adu
Affiliation:
Department of Physics, The Pennsylvania State University, Altoona College, Altoona, PA 16802, U.S.A. Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
Gamini U. Sumanasekera
Affiliation:
Department of Physics & Astronomy, University of Louisville, Louisville, KY 40292, U.S.A. Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, U.S.A.
Get access

Abstract

We report an increase in superconducting temperature of magnesium diboride (MgB2) by minute single-wall carbon nanotubes (SWCNT) inclusions. The SWCNTs concentration was varied from 0.1wt% to 1.0wt%. The temperature dependence resistivity of sintered MgB2- SWCNTs composites containing 0.1wt%, 0.5wt% and 1.0wt% were measured and compared with that of the pure MgB2. The superconducting critical temperature (Tc) of the MgB2 increased from 40 K to as high as 42.4 K for the MgB2 containing 0.5wt% of SWCNTs. The room temperature resistivity ratio (RRR) shows dependence on the sample composition. The temperature width (ΔT) decreases with increasing SWCNT content from 0.1wt% to 1.0wt%. The normal state resistivity data were fitted with the generalized Block-Grüneisen function obtaining a Debye temperature of ∼ 900K.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 5658 (1991)CrossRef
Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J., Nature 410, 63 (2001)CrossRef
Xi, X.X., Rep. Prog. Phys. 71, 116501 (2008)CrossRef
Drozd, V.A., Gabovich, A.M., Gierlowski, P, Pekala, M., and Szymczak, H, Phsica CSuperconductivity and Its Applications 402, 325334 (2004)CrossRef
Poddar, A, Bandyopadhyay, B, Mandal, P, Bhattacharya, D, Choudhury, P, Sinha, U, and Ghosh, B, Phsica C-Superconductivity and Its Applications 390, 191196 (2003)CrossRef
Bud’ko, S. L., Petrovic, C., Lapertot, G., Cunningham, C. E., Canfield, P.C., Jung, M.G., and Lacerda, A. H., Phys. Rev. B 63, 220503 (2001)CrossRef
Jung, C. U., Park, M. S., Kang, W.N., Kim, M. S., Kim, K. H., Lee, S. Y., and Lee, S. I., Appl. Phys. Lett. 78, 4157 (2001)CrossRef
Takano, Y., Takeya, H., Fujii, H., Kumakura, H., Hatano, T., Togano, K., Kito, H., and Ihara, H., Appl. Phys. Lett. 78, 2914 (2001)CrossRef
Serrano, G.; Serquis, A.; Dou, S. X.; Soltanian, S.; Civale, L.; Maiorov, B.; Holesinger, T. G.; Balakirev, F.; Jaime, M.; J. Appl. Phys. 103(2), 023907 (2008)CrossRef
Dou, S. X.; Yeoh, W. K.; Shcherbakova, O.; Wexler, D.; Li, Y.; Ren, Z. M.; Munroe, P.; Chen, S. K.; Tan, K. S.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Adv. Mat. 18, 785 (2006)CrossRef
Kong, Y, Dolgov, O.V, Jepsen, O, and Andersen, O.K, Physical Review B 64, 231 (2001)CrossRef
Eklund, P.C and Mabatah, A.K, Review of Scientific Instruments 48, 775777 (1977)CrossRef
Kremer, R.K, Gibson, B.J, and Ahn, K, cond-mat. 0102432 (2001)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of SWCNT Dilution on the Resistivity of MgB2
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of SWCNT Dilution on the Resistivity of MgB2
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of SWCNT Dilution on the Resistivity of MgB2
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *