Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-bkjnw Total loading time: 0.205 Render date: 2021-10-23T12:26:38.698Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effect of Structure on the Anomalous Mechanical Properties of Metallic Superlattices

Published online by Cambridge University Press:  22 February 2011

Ivan K. Schuller
Affiliation:
Physics Department 0319, University of California-San Diego, La Jolla, CA 92093–0319
A. Fartash
Affiliation:
Physics Department 0319, University of California-San Diego, La Jolla, CA 92093–0319 Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Eric E. Fullerton
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
M. Grimsditcht
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The mechanical properties of metallic superlattices have been shown to exhibit anomalous properties. Several of the elastic constants are found to exhibit anomalies which are correlated with structural anomalies in lattice mismatched systems which do not form solid solutions. Lattice matched systems which form solid solutions in their thermodynamics phase diagram, show much smaller elastic anomalies and no structural anomalies. Anomalous plastic behavior, on the other hand, seems to be present in both types of superlattices, indicating that the plastic behavior is possibly defect induced. Detailed quantitative structural measurements combined with comprehensive mechanical properties hold the promise of determining the physical origins of the anomalous properties of metallic superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chien, C.J., Farrow, R.F.C., Lee, C.H., Lin, C.J., and Marinero, E.E., J. Magn. Magn. Mat. 22, 47 (1991).CrossRefGoogle Scholar
2. Nahm, S., Salamanca-Riba, L., Jonker, B.T., and Prinz, G.A., Mat. Res. Soc. Symp. Proc. 160, 209 (1990).CrossRefGoogle Scholar
3. For a review see for instance, McWhan, D. B., in Physics. Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988);Google Scholar
Fujii, Y. in Metallic Superlattices Artificially Structured Materials, edited by Shinjo, T. and Takada, T. (Elsevier, Amsterdam, 1987).Google Scholar
4. Underwood, J. H. and Barbee, T. W., Appl. Opt. 20, 3027 (1981).CrossRefGoogle Scholar
5. Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
6. Schuller, I. K. and Grimsditch, M., J. Vac. Sci. Technol. B 4, 1444 (1986).CrossRefGoogle Scholar
7. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
8. Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).CrossRefGoogle Scholar
9. McWhan, D. B., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, Orlando, 1985), p43.CrossRefGoogle Scholar
10. Mattson, J., Bhadra, R., Ketterson, J. B., Brodsky, M.B., and Grimsditch, M., J. Appl. Phys. 62, 2873.Google Scholar
11. Steams, M.B., Lee, C.H., and Gray, T.L., Phys. Rev. B 28, 8109 (1988).Google Scholar
12. Gladyszewski, G., Thin Solid Films 170, 99 (1989).CrossRefGoogle Scholar
13. Hendricks, S. and Teller, E., J. Chem. Phys. 10, 147 (1942).CrossRefGoogle Scholar
14. Sevenhans, W., Gijs, M., Bruynseraede, Y., Homma, H., and Schuller, I.K., Phys. Rev. B 34, 5955 (1986).CrossRefGoogle Scholar
15. Clemens, B.M. and Gay, J.G., Phys. Rev. B 35, 9337 (1987).CrossRefGoogle Scholar
16. Locquet, J.-P., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B 22, 3572 (1988).CrossRefGoogle Scholar
17. Locquet, J.-P., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B. 39, 13 338(1989).CrossRefGoogle Scholar
18. Fullerton, E.E., Schuller, I.K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B (submitted).Google Scholar
19. Schuller, I.K., Fullerton, E.E., Vanderstraeten, H., and Bruynseraede, Y., Mat. Res. Soc. Symp Proc 222, 41 (1991).CrossRefGoogle Scholar
20. Clarke, R., Lamelas, F.J., Hui, H. D., Baudelet, F., Dartyge, E., and Fontaine, A., J. Magn. Magn. Mat. 22, 53 (1991).CrossRefGoogle Scholar
21. Bain, J.A., Chyung, L.J., Brennan, S., Clemens, B.M., Phys. Rev. B 44, 1184 (1991).CrossRefGoogle Scholar
22. Idzerda, Y. U., Jonker, B.T., Elam, W.T., and Prinz, G.A., J. Appl. Phys. 67, 5385 (1989).CrossRefGoogle Scholar
23. Egelhoff, W. F. Jr, Jacob, I., Rudd, J. M., Cochran, J. F., and Heinrich, B., J. Vac. Sci. Technol. A 8, 1582 (1990).CrossRefGoogle Scholar
24. Shinjo, T. in Metallic Superlattices Artificially Structured Materials, edited by Shinjo, T. and Takada, T. (Elsevier, Amsterdam, 1987)Google Scholar
25. Le Dang, K., Veillet, P., He, H., Lamelas, F. J., Lee, C. H., Clarke, R., Phys. Rev. B 41, 12902 (1990).CrossRefGoogle Scholar
26. de Gronckel, H.A.M., Kopinga, K., de Jonge, W.J.M, Panissod, P., Schillé, J.P., and den Broeder, F.J.A., Phys. Rev. B 44, 9100 (1991).CrossRefGoogle Scholar
27. Jonker, B.T., Krebs, J.J., and Prinz, G.A., Phys. Rev. B 22, 1399 (1989).CrossRefGoogle Scholar
28. Lee, C.H., He, H., Lamelas, F., Vavra, W., Uher, C., and Clarke, R., Phys. Rev. Lett. B 62, 653 (1989).CrossRefGoogle Scholar
29. Lamelas, F. J., He, H. D., and Clarke, R., Phys. Rev. B 42, 12296 (1991).CrossRefGoogle Scholar
30. Fartash, A., Schuller, I.K., Fullerton, E.E., and Grimsditch, M., (to be published).Google Scholar
31. Schuller, I. K., Fartash, A. and Grimsditch, M., MRS Bulletin XV, 33, (1990).CrossRefGoogle Scholar
32. Fartash, A., Schuller, I. K. and Grimsditch, M., Rev. Sci. Instrum. 62, 494 (1991).CrossRefGoogle Scholar
33. Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbin, S. E., Wagner, J. W., Cammarata, R. C., Kumar, S. and Grimsditch, M., Phys. Rev. B 44, (1991) (in press).CrossRefGoogle Scholar
34. Bobbin, S. E., Wagner, J. W. and Cammarata, R. C., Appl. Phys. Lett. 52, 1544 (1991).CrossRefGoogle Scholar
35. Dutcher, J. R., Lee, S., Kim, J., Bell, J. A., Stegeman, G. I. and Falco, C. M., Mat. Sci. Eng. B 6, 199 (1990).CrossRefGoogle Scholar
36. Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 52, 1076 (1985).Google Scholar
37. Barai, D., Ketterson, J. B. and Hilliard, J. E., J. Appl. Phys. 52, 1076 (1985).Google Scholar
38. Yang, W. M. C, Tsakalakos, T and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
39. Henein, G. and Hilliard, J. E., J. Appl. Phys. 54, 728 (1983).CrossRefGoogle Scholar
40. Moreau, A., Ketterson, J. B. and Mattson, J., Appl. Phys. Lett. 56, 1959 (1990).CrossRefGoogle Scholar
41. Moreau, A., Ketterson, J. B. and Davis, B., Appl. Phys. 68, 1622 (1990).CrossRefGoogle Scholar
42. Davis, B. M., Seidman, D. N., Moreau, A., Ketterson, J. B., Mattson, J. and Grimsditch, M., Phys. Rev. B 43, 9308 (1991).Google Scholar
43. Dutcher, J. R., Lee, S., Kim, J., Stegeman, G. and Falco, C. M., Phys. Rev. Lett. 65, 1231 (1990).CrossRefGoogle Scholar
44. Fullerton, E. E., Schuller, I. K., Parker, F. T. III, Svinarich, K. A., Eesley, G. A., Bhadra, R. and Grimsditch, M., Phys. Rev. B (in press).Google Scholar
45. Cammarata, R. C., Schlesinger, T.E., Kim, C., Qadri, S. B. and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
46. Koehler, J. S., Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
47. Dieter, G., Mechanical Metallurgy (McGraw-Hill, New York, 1986), p. 181.Google Scholar
48. Baumann, T., Pethica, J. B., Grimsditch, M. and Schuller, I. K., Mat. Res. Symp. Proc. 77, 527 (1991).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Structure on the Anomalous Mechanical Properties of Metallic Superlattices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Structure on the Anomalous Mechanical Properties of Metallic Superlattices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Structure on the Anomalous Mechanical Properties of Metallic Superlattices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *