Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T23:44:45.964Z Has data issue: false hasContentIssue false

Effect of Structure on the Anomalous Mechanical Properties of Metallic Superlattices

Published online by Cambridge University Press:  22 February 2011

Ivan K. Schuller
Affiliation:
Physics Department 0319, University of California-San Diego, La Jolla, CA 92093–0319
A. Fartash
Affiliation:
Physics Department 0319, University of California-San Diego, La Jolla, CA 92093–0319 Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Eric E. Fullerton
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
M. Grimsditcht
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The mechanical properties of metallic superlattices have been shown to exhibit anomalous properties. Several of the elastic constants are found to exhibit anomalies which are correlated with structural anomalies in lattice mismatched systems which do not form solid solutions. Lattice matched systems which form solid solutions in their thermodynamics phase diagram, show much smaller elastic anomalies and no structural anomalies. Anomalous plastic behavior, on the other hand, seems to be present in both types of superlattices, indicating that the plastic behavior is possibly defect induced. Detailed quantitative structural measurements combined with comprehensive mechanical properties hold the promise of determining the physical origins of the anomalous properties of metallic superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chien, C.J., Farrow, R.F.C., Lee, C.H., Lin, C.J., and Marinero, E.E., J. Magn. Magn. Mat. 22, 47 (1991).Google Scholar
2. Nahm, S., Salamanca-Riba, L., Jonker, B.T., and Prinz, G.A., Mat. Res. Soc. Symp. Proc. 160, 209 (1990).Google Scholar
3. For a review see for instance, McWhan, D. B., in Physics. Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988);Google Scholar
Fujii, Y. in Metallic Superlattices Artificially Structured Materials, edited by Shinjo, T. and Takada, T. (Elsevier, Amsterdam, 1987).Google Scholar
4. Underwood, J. H. and Barbee, T. W., Appl. Opt. 20, 3027 (1981).Google Scholar
5. Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
6. Schuller, I. K. and Grimsditch, M., J. Vac. Sci. Technol. B 4, 1444 (1986).Google Scholar
7. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).Google Scholar
8. Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
9. McWhan, D. B., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, Orlando, 1985), p43.Google Scholar
10. Mattson, J., Bhadra, R., Ketterson, J. B., Brodsky, M.B., and Grimsditch, M., J. Appl. Phys. 62, 2873.Google Scholar
11. Steams, M.B., Lee, C.H., and Gray, T.L., Phys. Rev. B 28, 8109 (1988).Google Scholar
12. Gladyszewski, G., Thin Solid Films 170, 99 (1989).Google Scholar
13. Hendricks, S. and Teller, E., J. Chem. Phys. 10, 147 (1942).Google Scholar
14. Sevenhans, W., Gijs, M., Bruynseraede, Y., Homma, H., and Schuller, I.K., Phys. Rev. B 34, 5955 (1986).CrossRefGoogle Scholar
15. Clemens, B.M. and Gay, J.G., Phys. Rev. B 35, 9337 (1987).Google Scholar
16. Locquet, J.-P., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B 22, 3572 (1988).Google Scholar
17. Locquet, J.-P., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B. 39, 13 338(1989).Google Scholar
18. Fullerton, E.E., Schuller, I.K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B (submitted).Google Scholar
19. Schuller, I.K., Fullerton, E.E., Vanderstraeten, H., and Bruynseraede, Y., Mat. Res. Soc. Symp Proc 222, 41 (1991).Google Scholar
20. Clarke, R., Lamelas, F.J., Hui, H. D., Baudelet, F., Dartyge, E., and Fontaine, A., J. Magn. Magn. Mat. 22, 53 (1991).Google Scholar
21. Bain, J.A., Chyung, L.J., Brennan, S., Clemens, B.M., Phys. Rev. B 44, 1184 (1991).Google Scholar
22. Idzerda, Y. U., Jonker, B.T., Elam, W.T., and Prinz, G.A., J. Appl. Phys. 67, 5385 (1989).Google Scholar
23. Egelhoff, W. F. Jr, Jacob, I., Rudd, J. M., Cochran, J. F., and Heinrich, B., J. Vac. Sci. Technol. A 8, 1582 (1990).Google Scholar
24. Shinjo, T. in Metallic Superlattices Artificially Structured Materials, edited by Shinjo, T. and Takada, T. (Elsevier, Amsterdam, 1987)Google Scholar
25. Le Dang, K., Veillet, P., He, H., Lamelas, F. J., Lee, C. H., Clarke, R., Phys. Rev. B 41, 12902 (1990).CrossRefGoogle Scholar
26. de Gronckel, H.A.M., Kopinga, K., de Jonge, W.J.M, Panissod, P., Schillé, J.P., and den Broeder, F.J.A., Phys. Rev. B 44, 9100 (1991).Google Scholar
27. Jonker, B.T., Krebs, J.J., and Prinz, G.A., Phys. Rev. B 22, 1399 (1989).Google Scholar
28. Lee, C.H., He, H., Lamelas, F., Vavra, W., Uher, C., and Clarke, R., Phys. Rev. Lett. B 62, 653 (1989).Google Scholar
29. Lamelas, F. J., He, H. D., and Clarke, R., Phys. Rev. B 42, 12296 (1991).Google Scholar
30. Fartash, A., Schuller, I.K., Fullerton, E.E., and Grimsditch, M., (to be published).Google Scholar
31. Schuller, I. K., Fartash, A. and Grimsditch, M., MRS Bulletin XV, 33, (1990).Google Scholar
32. Fartash, A., Schuller, I. K. and Grimsditch, M., Rev. Sci. Instrum. 62, 494 (1991).Google Scholar
33. Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbin, S. E., Wagner, J. W., Cammarata, R. C., Kumar, S. and Grimsditch, M., Phys. Rev. B 44, (1991) (in press).Google Scholar
34. Bobbin, S. E., Wagner, J. W. and Cammarata, R. C., Appl. Phys. Lett. 52, 1544 (1991).Google Scholar
35. Dutcher, J. R., Lee, S., Kim, J., Bell, J. A., Stegeman, G. I. and Falco, C. M., Mat. Sci. Eng. B 6, 199 (1990).Google Scholar
36. Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 52, 1076 (1985).Google Scholar
37. Barai, D., Ketterson, J. B. and Hilliard, J. E., J. Appl. Phys. 52, 1076 (1985).Google Scholar
38. Yang, W. M. C, Tsakalakos, T and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).Google Scholar
39. Henein, G. and Hilliard, J. E., J. Appl. Phys. 54, 728 (1983).Google Scholar
40. Moreau, A., Ketterson, J. B. and Mattson, J., Appl. Phys. Lett. 56, 1959 (1990).Google Scholar
41. Moreau, A., Ketterson, J. B. and Davis, B., Appl. Phys. 68, 1622 (1990).Google Scholar
42. Davis, B. M., Seidman, D. N., Moreau, A., Ketterson, J. B., Mattson, J. and Grimsditch, M., Phys. Rev. B 43, 9308 (1991).Google Scholar
43. Dutcher, J. R., Lee, S., Kim, J., Stegeman, G. and Falco, C. M., Phys. Rev. Lett. 65, 1231 (1990).Google Scholar
44. Fullerton, E. E., Schuller, I. K., Parker, F. T. III, Svinarich, K. A., Eesley, G. A., Bhadra, R. and Grimsditch, M., Phys. Rev. B (in press).Google Scholar
45. Cammarata, R. C., Schlesinger, T.E., Kim, C., Qadri, S. B. and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).Google Scholar
46. Koehler, J. S., Phys. Rev. B 2, 547 (1970).Google Scholar
47. Dieter, G., Mechanical Metallurgy (McGraw-Hill, New York, 1986), p. 181.Google Scholar
48. Baumann, T., Pethica, J. B., Grimsditch, M. and Schuller, I. K., Mat. Res. Symp. Proc. 77, 527 (1991).Google Scholar