Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-95llv Total loading time: 0.208 Render date: 2021-05-11T20:48:03.576Z Has data issue: true Feature Flags: {}

Effect of Solvent Concentration to the Preparation of Polystyrene Nanoparticles Using Polyelectrolyte Block Copolymer

Published online by Cambridge University Press:  01 February 2011

Garcia Doronila Edwin
Affiliation:
Myongji University, Department of Environmental Engineering and Biotechnology, Yongin City, Yongin City, 449-728, Republic of Korea
Youngjin Choi
Affiliation:
cinewin@mju.ac.kr, Myongji University, Department of Environmental Engineering and Biotechnology, Yongin City, 449-728, Republic of Korea
Hyeongmin Moon
Affiliation:
moon 129@mju.ac.kr, Myongji University, Department of Environmental Engineering and Biotechnology, Yongin City, 449-728, Republic of Korea
Bumsuk Jung
Affiliation:
bjung@mju.ac.kr, Myongji University, Department of Environmental Engineering and Biotechnology, Yongin City, 449-728, Republic of Korea
Corresponding
Get access

Abstract

Particles of sizes within the nano region have attracted many applications in different fields of science. In this study, the self assembly property in a selective solvent of block copolymers has been used for the preparation of polystyrene nanospheres. Sulfonated Styrene-Butadiene-Styrene (SSBS) tri block copolymer was used as a polymeric surfactant for synthesis of uniformly sized polystyrene nanoparticles using emulsion polymerization. The effects of initiator, monomer and block copolymer concentration to the molecular weight distribution and size distribution were investigated. Uniformly sized nanoparticles with a polydispersity index of 1.004 and diameter of 112.9nm was verified by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), respectively. Using a mixed continuous phase solution of water and methanol, it was found out that the particle size decreased relative to the increase of methanol added to the reaction solution. Associating behavior of the polyelectrolyte block copolymer in the binary solvent environment regarding size of micelle formed was reflected on the properties of the nanospheres. Nanoparticles prepared with greater methanol concentration were observed to be less than 100 nm. Size distribution was also observed to be narrower in proportion to MeOH concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1.) Riess, G., Prog. Polym. Sci. 23, 1107 (2003).CrossRefGoogle Scholar
2.) Riess, G. and Labbe, C., Maromol. Rapid Commun. 25, 401, (2004).CrossRefGoogle Scholar
3.) Zhang, W., Shi, L., An, Y., Gao, L., Wu, K., Ma, R., and Zhang, B., Macromol. Chem. Phys. 205, 2017 (2004).CrossRefGoogle Scholar
4.) Kim, J., Kim, B. and Jung, B., J. Membr. Sci. 207, 129 (2002).CrossRefGoogle Scholar
5.) Ni, P. H., Zhang, M. Z., Zhuge, L. J., and Fu, S. K. J Polym Sci Part A: Polym Chem. 40, 3744 (2002).Google Scholar
6.) Muller, H., Leube, W., Tauer, K., Forster, S., and Antonietti, M., Macromolecules 30, 228 (1997).Google Scholar
7.) Tauer, K. and Zimmermann, A., Maromol. Rapid Commun. 21, 825 (2000).3.0.CO;2-Q>CrossRefGoogle Scholar
8.) Zhang, W., Shi, L., An, Y., Gao, L., Wu, K., Ma, R., and Zhang, B., Macromolecules. 37, 2551 (2004).CrossRefGoogle Scholar
9.) Kim, J., Kim, B., Jung, B., Kang, Y.S., Ha, H. Y., Oh, I. H., Ihn, K. J., Macromol. Rapid Commun. 23, 753 (2002)3.0.CO;2-G>CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Solvent Concentration to the Preparation of Polystyrene Nanoparticles Using Polyelectrolyte Block Copolymer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Solvent Concentration to the Preparation of Polystyrene Nanoparticles Using Polyelectrolyte Block Copolymer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Solvent Concentration to the Preparation of Polystyrene Nanoparticles Using Polyelectrolyte Block Copolymer
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *