Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T13:26:39.307Z Has data issue: false hasContentIssue false

Effect of Ohmic Contacts on Polysilicon Memory Effect

Published online by Cambridge University Press:  01 February 2011

S.B. Herner
Affiliation:
Matrix Semiconductor, Santa Clara, CA
C. Jahn
Affiliation:
Matrix Semiconductor, Santa Clara, CA
D. Kidwell
Affiliation:
Matrix Semiconductor, Santa Clara, CA
Get access

Abstract

Polysilicon memory switching is demonstrated in vertical n-i-p diodes with TiN contacts and feature size 150 nm. An increase of more than three orders of magnitude forward current at +2 V is achieved after the application of a +8 V programming pulse. The programming pulse electro thermally melts the polysilicon through Joule heating, and the quenched diodes have higher forward current. By changing one of the contacts from TiN to TiSi2, polysilicon memory switching is eliminated, with high forward current in the diode before and after a programming pulse. The TiSi2 contact seeds the crystallization of polysilicon with fewer defects during fabrication, compared to crystallization with TiN-only contacts, as shown by transmission electron microscopy. The mechanisms for increased forward current induced by either programming the TiN-only contacted diodes or making one contact TiSi2 are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schafft, H.A., Proc. IEEE 55, 1272 (1967).Google Scholar
2 Tanimoto, M., Murota, J., Ohmori, Y., and Ieda, N., IEEE Trans. Elect. Dev. 27, 517 (1980).Google Scholar
3 Tanimoto, M., Murota, J., Wada, M., Watanabe, T., Miura, K., and Ieda, N., IEEE J. Sol. St. Circ. 17, 62 (1982).Google Scholar
4 Mano, T., Takeya, K., Watanabe, T., Ieda, N., Kiuchi, K., Arai, E., Ogawa, T., and Hirata, K., IEEE J. Sol. St. Circ. 15, 865 (1980).Google Scholar
5 Mahan, J.E., Appl. Phys. Lett. 41, 479 (1985).Google Scholar
6 LeComber, P.G., Owen, A.E., Spear, W.E., Hajto, J., Snell, A.J., Choi, W.K., Rose, M.J., and Reynolds, S., J. Non-Cryst. Sol. 77 and 78, 1373 (1985).Google Scholar
7 Malhotra, V., Mahan, J.E., and Ellsworth, D.L., IEEE Trans. Elect. Dev. ED-32, 2441 (1985).Google Scholar
8 Greve, D.W., IEEE J. Sol. St. Circ. 17, 349 (1982).Google Scholar
9 Herner, S.B., Bandyopadhyay, A., Dunton, S.V., Eckert, V., Gu, J., Hsia, K.J., Hu, S., Jahn, C., Kidwell, D., Konevecki, M., Mahajani, M., Park, K., Petti, C.J., Radigan, S.R., Raghuram, U., Vienna, J., Vyvoda, M.A., IEEE Elect. Dev. Lett. 25, 271 (2004).Google Scholar
10 Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1984).Google Scholar
11 Hatalis, M.K. and Greve, D.W., J. Appl. Phys. 63, 2260 (1988).Google Scholar
12 Lasky, J.B., Nakos, J.S., Cain, O.J., and Geiss, P.J., IEEE Trans Elect. Dev. 38, 262 (1991).Google Scholar
13 Sukow, C.A. and Nemanich, R.J., J. Mater. Res. 9, 1214 (1994).Google Scholar
14 Kittl, J.A., Hong, Z.-Z., Rodder, M., Prinslow, D.A., and Misium, G.R., Proceedings of the Symposium on VLSI Technol. Dig., 1996, p. 14.Google Scholar
15 Kim, K.S., Jang, Y.C., Kim, K.J., Lee, N.-E., Youn, S.P., Roho, K.J., and Roh, Y.H., J. Vac. Sci. Tech. B 19, 1164 (2001).Google Scholar
16 Tiang, Q., Liu, X., Kamins, T.I., Solomon, G.S., and Harris, J.S., Appl. Phys. Lett. 81, 2451 (2002).Google Scholar
17 Cody, G.D., Tiedje, T., Abeles, B., Brooks, B., and Goldstein, Y., Phys. Rev. Lett. 47, 1480 (1981).Google Scholar
18 Fortunato, G. and Migliorato, P., Appl. Phys. Lett. 49, 1025 (1986).Google Scholar