Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T02:36:09.588Z Has data issue: false hasContentIssue false

The Effect of Lewis Base Chemisorption on the Luminscence of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

Jeffery L. Coffer
Affiliation:
Department of Chemistry, Texas Christian University, Ft. Worth, TX 76129.
Sean C. Lilley
Affiliation:
Department of Chemistry, Texas Christian University, Ft. Worth, TX 76129.
Rebecca A. Martin
Affiliation:
Department of Chemistry, Texas Christian University, Ft. Worth, TX 76129.
Leigh Ann Files-Sesler
Affiliation:
Central Research Laboratories, Texas Instruments, Dallas, TX, 75265
Get access

Abstract

We report here studies on the effects of Lewis base addition on the observed luminescence of porous silicon generated non-anodically from a stain etch of <100> p-type wafers and whose surface morphology has been characterized by atomic force microscopy (AFM). Addition of dilute heptane solutions of alkyl amines such as n-butyl amine (C4H7NH2) results in dramatic quenching of the steady-state photoluminescence (PL) near 625 nm. The observed fractional changes in integrated PL intensity as a function of amine concentration have been fit to a simple equilibrium model demonstrating Langmuir-type behavior from which adduct formation constants have been calculated. These steady-state PL measurements are complemented by Fourier Transform Infrared (FT IR) spectroscopic measurements monitoring the effect of amine adsorption on the silicon hydride stretching modes [v(Si-Hx)] near 2100 cm-1. Based on these results, a physical model for the amine interactions with the porous silicon surface is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
3. Vasquez, R.P., Fathauer, R.W., George, T., Ksendzou, A., and Lin, T.L., Appl. Phys. Lett. 60, 1004 (1992).Google Scholar
4. Brandt, M.S., Fuchs, H.D., Stuzmann, M., Weber, J., Cardona, M., Solid State Comm. 81, 307 (1992).Google Scholar
5. Lauerhaas, J.M., Credo, G., Heinrich, J., Sailor, M.J., J. Am Chem. Soc. 114, 1911 (1992).Google Scholar
6. Gupta, P., Colvin, V. L., and George, S.M., Phys. Rev. B 37, 8234 (1988).Google Scholar
7. Fathauer, R.W., George, T., Ksendzou, A., Vasquez, R.P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
8. George, T., Anderson, M., Pike, W., Lin, T., Fathauer, R.W., Jung, K., Kwong, D., Appl. Phys. Lett. 60, 2359 (1992)Google Scholar
9. Meyer, G.J., Lisensky, G.C., Ellis, A.B., J. Am. Chem. Soc. 110, 4914 (1988).Google Scholar
10. Dannhauser, T., O'Neil, M., Johansson, K., Whitten, D., McLendon, G., J. Phys. Chem. 90, 6074 (1986).Google Scholar
11. Chandler, R.R., Coffer, J.L., Atherton, S.J., Snowden, P.T., J. Phys. Chem. 96, 2713 (1992).Google Scholar
12. Tsai, C., Li, K.-H., Kinosky, D., Qian, R., Hsu, J., Irby, J., Banerjee, S., Tausch, A., Campbell, J.C., Hance, B., and White, J.M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
13. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B., and White, J.M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
14. Robinson, M.B., Dillon, A.C., Haynes, D.R., and George, S.M., Appl. Phys. Lett. 61, 1414 (1992).Google Scholar
15. Vial, J., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Macfarlane, R., Phys. Rev. B 45, 14 171 (1992).Google Scholar