Hostname: page-component-5d59c44645-hb754 Total loading time: 0 Render date: 2024-02-22T23:19:52.016Z Has data issue: false hasContentIssue false

Effect of a Channel Length and Drain Bias on the Threshold Voltage of Field Enhanced Solid Phase Crystallization Polycrystalline Thin Film Transistor on the Glass Substrate

Published online by Cambridge University Press:  01 February 2011

Won-Kyu Lee
Affiliation:
wklee@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Bldg. 130, Rm. 302, Seoul National Univ., San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Sang-Myeon Han
Affiliation:
smhan@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Bldg. 130, Rm. 302, Seoul National Univ., San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Sang-Geun Park
Affiliation:
psg97@emlab.snu.ac.kr, Seoul National University, School of Electrical Engineering, Bldg. 130, Rm. 302, Seoul National Univ., San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Young-Jin Chang
Affiliation:
yj.chang@samsung.com, Samsung Electronics Co., LCD Business, San-24, Nongseo-dong, Giheung-gu, Yongin, 449-711, Korea, Republic of
Kee-Chan Park
Affiliation:
keechan@konkuk.ac.kr, Konkuk University, Dept. of Electronics Engineering, Seoul, 143-701, Korea, Republic of
Chi-Woo Kim
Affiliation:
chiwookim@samsung.com, Samsung Electronics Co., LCD Business, San-24, Nongseo-dong, Giheung-gu, Yongin, 449-711, Korea, Republic of
Min-Koo Han
Affiliation:
mkh@snu.ac.kr, Seoul National University, School of Electrical Engineering, Bldg. 130, Rm. 302, Seoul National Univ., San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea, Republic of
Get access

Abstract

We have fabricated a new magnetic field enhanced solid phase crystallization (FESPC) polycrystalline silicon (poly-Si) thin film transistors (TFTs), which shows the excellent electrical characteristics and superior stability compared with hydrogenated amorphous silicon (a-Si:H) TFTs. The mobility (μ) and threshold voltage (VTH) of p-type TFTs of which the channel width and length are 5 μm and 7 μm, respectively are 31.98 cm2/Vs and -6.14 V, at VDS=-0.1 V. In the FESPC TFTs, the characteristics caused by grain boundary are remarkable due to large number of grain boundaries in the channel compared with poly-Si TFTs. The VTH of the TFT which have 5 μm channel length is smaller than that of 18 μm channel length by 1.36 V, which is considerably large value. It is due to the large number of grain boundaries in the channel and the high lateral electric field. The grain boundary potential barrier height is decreased, when the large lateral electric field is applied (which is called DIGBL effect). As a result of increased mobility, the drain current is increased, and VTH can be decreased. The activation energy (Ea) is strongly depended on the drain bias and the number of grain boundaries. is decreased, caused by the large drain bias and/or smaller number of grain boundaries. This decreased Ea can be reduced VTH due to increased the drain current. VTH of p-type poly-Si TFT employing FESPC on the glass substrate is affected by channel length and VDS due to energy barrier lowering effect at the grain boundary by increased lateral electrical field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Saafir, A. K., Chung, J. K., Joo, I. S., Huh, J. M., Rhee, J. S., Park, S. K., Choi, B. R., Ko, C. S., Koh, B. S., Hung, J. H., Choi, J. H., Kim, N. D., and Chung, K. H., SID '05 Digest 968 (2005).Google Scholar
2 Lih, J. J., Sung, C. F., Li, C. H., Hsiano, T. H., and Lee, H. H., SID' 04 Digest 1504 (2004).Google Scholar
3 Lee, J.-H., Nam, W.-J., Shin, K.-S., and Han, M.-K., J. Non-Cryst. Solids 352, 1719 (2006).Google Scholar
4 Lee, J.-H., Kim, J.-H., and Han, M.-K., IEEE Electron Device Lett. 26, 897 (2005).Google Scholar
5 Bui, V. D., Bonnassieux, Y., Parey, J. Y., Djeridane, Y., Abramov, A., Cabarrocas, P. R., and Kim, H. J., SID '06 Digest 204 (2006).Google Scholar
6 Lee, S.-W., and Joo, S.-K., IEEE Electron Device Lett. 17, 160 (1996).Google Scholar
7 Yoon, S. Y., Kim, K. H., Kim, C. O., Oh, J. Y., and Jang, J., J. Appl. Phys. 82, 5865 (1997).Google Scholar
8 Sameshima, T., J. Non-Cryst. Solids 227-230, 1196 (1998).Google Scholar
9 Zhao, Y., Wang, W., Yun, F., Xu, Y., Liao, X., Ma, Z., Yue, G., and Kang, G., Sol. Energy Mater. Sol. Cells 62, 43 (2000).Google Scholar
10 Yoon, S. Y., Park, S. J., Kim, K. H., and Jang, J., Thin Solid Films 383, 34 (2001).Google Scholar
11 Ahn, J. H., Lee, J. N., Kim, Y. C., and Ahn, B. T., Curr. Appl. Phys. 2, 135 (2002).Google Scholar
12 Park, S. H., Kim, H. J., Kang, K. H., Lee, J. S., Choi, Y. K., and Kwon, O. M., J. Phys. D: Appl. Phys. 38, 1511 (2005).Google Scholar
13 Kawazu, Y., Kudo, H., Onari, S., and Arai, T., Jpn. J. Appl. Phys. 129, 729 (1990).Google Scholar
14 Hayzelden, C., Bastone, J. L., and Cammarata, R. C., Appl. Phys. Lett. 60, 225 (1992).Google Scholar
15 Choi, Y. J., Kwak, W. K., Park, S. J., Yoon, S. J., Kim, C. O., and Jang, J., SID' 99 Digest 508 (1999).Google Scholar
16 So, B. S., You, Y. H., Kim, H. J., Kim, Y. H., Hwang, J. H., Shin, D. H., Ryu, S. R., Choi, K., and Y. C. Kim in Application of Field-Enhanced Rapid Thermal Annealing to Activation of Doped Polycrystalline Si Thin Films, (Mater. Res. Soc. Proc. 862, 2005) pp. 275280.Google Scholar
17 Song, I.-H., Kang, S.-H., Nam, W.-J., and Han, M.-K., IEEE Electron Device Lett. 24, 580 (2003).Google Scholar
18 Yang, G.-Y., Hur, S.-H., and Han, C.-H., IEEE Trans. Electron Devices 46, 165 (1999).Google Scholar
19 Bonnaud, O., Moammed-Brahim, T., and Ast, D. G. in Thin Film Transistors-Materials and Processes Volume 2-Polycrystalline Silicon Thin Film Transistors, edited by Kuo, Y. (Kluwer Academic Publishers, New York, 2004), p. 37.Google Scholar
20 Malhi, S. D. S., Shichijo, H., Banerjee, S. K., Sundaresan, R., Elahy, M., Pollack, G. P., Richardson, W. F., Shah, A. H., Hite, L. R., Womack, R. H., Chatterjee, P. K., and Lam, H. W., IEEE J. Solid-State Circuits SC-20, 178 (1985).Google Scholar