Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T11:29:10.707Z Has data issue: false hasContentIssue false

The early stages of stress development during epitaxial growth of Ag/Cu multilayers

Published online by Cambridge University Press:  01 February 2011

S. Labat
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
F. Bocquet
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
T. Bigault
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
L. Roussel
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
G. Mikaelian
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
C. Alfonso
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
A. Charai
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
O. Thomas
Affiliation:
TECSEN, Université Aix-Marseille III, case 262, Faculté de St Jérôme, Marseille 13397 Cedex 20, France
Get access

Abstract

The early stages of stress development during epitaxial growth of metal layers with a large misfit in lattice parameters still need in-depth understanding. In this particular study we have focused on Ag-Cu system, which is immiscible and exhibit a large 14% misfit in lattice parameters. Ag/Cu multilayers have been grown by ultrahigh-vacuum evaporation on Si (111) maintained at -20°C, 35°C or 110°C. The thickness of the individual layers is about 100 Å. All the films present the same (111) orientation with a well defined in-plane orientation: <110> Cu or Ag // <110> Si. The stress was monitored during growth with a home-made laser curvature measurement device. The stress vs thickness behaviour is highly asymmetric when comparing Ag/Cu and Cu/Ag. Indeed Ag grown on Cu does not develop any measurable stress at any thickness or temperature, whereas Cu grows on Ag under tensile temperature and thickness-dependent stress. The temperature dependence of this stress relaxation cannot be interpreted with a standard relaxation model including dislocation motion. A possible way to understand the stress temperature dependence is to consider the evolution of microstructure during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
Matthews, J. W., Mader, S., Light, T.B., J. Appl. Phys. 41, 3800 (1970).Google Scholar
2. Freund, L. B., J. Appl. Mech. 54, 553 (1987).Google Scholar
Freund, L. B., Adv. Appl. Mech. 30, 1 (1994).Google Scholar
Nix, W. D., Scripta Mater. 39, 545 (1998).Google Scholar
3. Ruud, J.A., Witrouw, A. and Spaepen, F., J. Appl. Phys. 74, 2517 (1993).Google Scholar
4. Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).Google Scholar
5. Shull, A, and Spaepen, F. J. Appl. Phys. 80 (1996) 62436256 Google Scholar
6. Sander, D., Skomski, R., Senders, C., Kirschner, J., Phys. Rev. Lett. 77 (1996) 2566.Google Scholar
7. Chason, E., Sheldon, B., Freund, L., Floro, J., Hearne, S., Phys. Rev. Lett. 88, 156103 (2002).Google Scholar
8. Tersoff, J., LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
9. Floro, J., Chason, E., Twesten, R., Hwang, R., Freund, L., J. Elect. Mat. 26, 969 (1997).Google Scholar
10. Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., Appl. Phys. Lett. 75, 914 (1999).Google Scholar
11. Meunier, I., Tréglia, G., Gay, J. M., and Auffrey, B., Phys. Rev. B 59, 10910 (1999).Google Scholar
12. Jacobsen, J., Pleth Nielsen, L., Besenbacher, F., Stensgaard, I., Lagsgaard, E., Rasmussen, T., Jacobsen, K., Norskov, J., Phys. Rev. Lett. 75, 489 (1995).Google Scholar
13. Bocquet, F., Bigault, T., Alfonso, C., Labat, S., Thomas, O., Charai, A., J. Appl‥ Phys. to be published in 2004.Google Scholar
14. Stoney, G., Proc. R. Soc. London Ser. A82, 172 (1909).Google Scholar
15. Huttunen, P. A. and Vehanen, A., Phys. Rev. B 42, 11570 (1990).Google Scholar
16. Horng, C. T., Vook, R. W., J. Vac. Sci. Tech. 11, 140 (1974).Google Scholar
17. Umezzawa, K., Nakanishi, S., Yoshimura, M., Ojima, K., Ueda, K., Gibson, W. M., Phys. Rev. B 63, 035402–1 (2000).Google Scholar
18. Wedler, G., Wassermann, B., Notzel, R. and Koch, R., Appl. Phys. Lett. 78, 1270 (2001).Google Scholar
19. Tersoff, J., Phys. Rev. Lett. 74, 434 (1994).Google Scholar
20. Abadias, G., Gilles, B., Marty, A., Appl. Surf. Sci. 177, 273 (2001).Google Scholar
21. Koch, R., Winau, D., Fuhrmann, A., and Rieder, K. H., Phys. Rev. B 44, 3369 (1991).Google Scholar
Koch, R., Wedler, G., and Wassermann, B., Appl. Surf. Sci. 190, 422 (2002).Google Scholar
22. Seel, S. C., Thompson, V., Hearne, S. J. and Floro, J. A., J. Appl. Phys. 88, 7079 (2000).Google Scholar
Phillips, M. A., Ramaswamy, V., Clemens, B. M., Nix, W. D., J. Mater. Res. 11, 2540 (2000).Google Scholar
23. Muller, B., Nedelmann, L., Fischer, B., Brune, H. and Kern, K., Phys. Rev. B 54, 17858 (1996).Google Scholar