Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-26T17:05:14.478Z Has data issue: false hasContentIssue false

Dynamic behavior of azobenzene polyester used for holographic data storage

Published online by Cambridge University Press:  21 March 2011

Árpád Kerekes
Affiliation:
Department of Atomic Physics, Budapest University for Technologyand Economics H-1111 Budapest, Budafoki 8., Hungary
E. Lörincz
Affiliation:
Department of Atomic Physics, Budapest University for Technologyand Economics H-1111 Budapest, Budafoki 8., Hungary
Sz. Sajti
Affiliation:
Optilink Hungary Ltd., Graphisoft Park, 1031 Budapest, Hungary
P. Várhegyi
Affiliation:
Optilink Hungary Ltd., Graphisoft Park, 1031 Budapest, Hungary
P. S. Ramanujam
Affiliation:
Department of Optics and Fluid Dynamics, Risφ National Laboratory, DK-4000 Roskilde, Denmark
S. Hvilsted
Affiliation:
Danish Polymer Centre, Department of Chemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Get access

Abstract

Dynamic behavior of thin photoaddressable polyester films was studied. The saturation process due to Fourier holographic recording was investigated. Model experiments show an optimal intensity ratio of the object and reference beams, where the highest efficiency occurs. This ratio is inversely proportional to the reference intensity. The material has a significantly higher sensitivity at 407 nm than at 532 nm. For 1 μm thick sample an M# of 0.25 was measurable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eickmans, J., Bieringer, T., Kostromine, S., Berneth, H., Thoma, R., Photoaddresable Polymers: A new class of materials for optical data storage and holographic memories, Jpn. J. Appl. Phys. Vol. 38. p. 18351836 (1999).Google Scholar
2. Hvilsted, S., Andruzzi, F., Kulinna, C., Siesler, H.W., Ramanujam, P. S.: Novel Side-Chain Liquid Crystalline Polyester Architecture for Reversible Optical Storage, Macromolecules Vol.28, p. 21722183 (1995).Google Scholar
3. Kerekes, Á., Sajti, Sz., Lörincz, E., Hvilsted, S., Ramanujam, P. S., Rewritable azobebzebe polyester for polarization holographic data storage, in Holography 2000, Jeong, Tung H., Sobotka, Werner K., Editors, Proc. of SPIE Vol. 4149, pp. 324331 (2000).Google Scholar
4. Lörincz, E., Ujhelyi, F., Kopppa, P., Sütö, A., Szarvas, G., Erdei, G., Hvilsted, S., Ramanujam, P. S., Richter, P.I., Rewritable holographic memory card system, in Optical Data Storage 2000, Stinson, Dougles G., Katayama, Ryuichi, Editors, Proc. of SPIE Vol. 4090, pp. 185190 (2000).Google Scholar
5. Bernal, M. P., Burr, G. W., Coufal, H., Experimental study of the effects of a six-level phase mask on a digital holographic storage system, Appl. Opt. Vol. 37. No. 11. (1998).Google Scholar
6. Mok, F. H., Burr, G. W., Psaltis, D., System metric for holographic memory systems, Opt. Lett. Vol. 21. No.12. (1996).Google Scholar
7. Todorov, T., Nikolova, L. and Tomova, N., Polarization Holography 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence, Appl. Opt. Vol.23, No.24, p. 45884591 (1984).10.1364/AO.23.004588Google Scholar
8. Holme, N. C. R., Nikolova, L. and Ramanujam, P.S., Hvilsted, S., An analysis of the anisotropic and topographic gratings in side-chain liquid crystalline azobenzene polyester, Appl. Phys. Lett. 70 (12), p. 15181520 (1997).Google Scholar
9. Coufal, H. J., Psaltis, D., Sincerbox, G. T. (Eds.), Holographic Data Storage, Springer (2000).Google Scholar
10. Steckman, G. J., Bittner, R., Meerholz, K., Psaltis, D., Holographic multiplexing in photorefractive polymers, Opt. Comm. 185, p. 1317 (2000).Google Scholar