Hostname: page-component-68945f75b7-wph62 Total loading time: 0 Render date: 2024-08-06T09:05:13.049Z Has data issue: false hasContentIssue false

Double Periodicity Formation in EuTe/PbTe Superlattices

Published online by Cambridge University Press:  21 February 2011

M. Shima
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742.
L. Salamanca-Riba
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742.
G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, Linz, Austria.
G. Bauer
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, Linz, Austria.
Get access

Abstract

Molecular beam epitaxy was used to grow EuTe(x)/PbTe(y) short period superlattices with x=1-4 EuTe(111) monolayers alternating with y≈3x PbTe monolayers. The superlattices were characterized by transmission electron microscopy and high resolution x-ray diffraction. Regions with double periodicity were observed coexisting with areas of nominal periodicity. The sample with x=3.5 and y=9, for example, contains regions with double periodicity of x=7 and y=17. X-ray diffraction measurements confirm the formation of the double periodicity in these samples by the appearance of weak satellites in between the satellites of the nominal periodicity. The double periodicity in the superlattice is believed to result from interdiffusion during the growth. A model for this process is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Springholz, G., Mat. Sci. Forum 182–184, 573 (1995).Google Scholar
2 Chen, J. J., Wang, Z. H., Dresselhaus, M. S., Dresselhaus, G., Springholz, G., and Bauer, G., Solid State Electronics 37, 1073 (1994).Google Scholar
3 Giebultowiecz, T. M., Luo, H., Samarth, N., Furdyna, J. K., Nunez, Valerie, Rhyne, J. J., Faschinger, W., Springholz, G., Bauer, G., and Sitter, H., Mat. Sci. Forum 182–184, 579 (1995).Google Scholar
4 Ishida, A., Matsuura, S., Fujiyasu, H., Ebe, H., and Shinohara, K., Superlatt. Microstruct. 2, 575 (1986).Google Scholar
5 Salamanca-Riba, L., Nahm, S., Wuttig, M., Roitburd, A., Feit, Z., Kostyk, D., and Woods, R. in Thin Film Structures and Phase Stability, edited by Clemens, B. M. and Johnson, W. L. (Mater. Res. Soc. Proc. 187, Pittsburg, PA, 1990) p. 4752.Google Scholar
6 Cahn, J. W., Acta. Metall. 9, 795 (1961).Google Scholar
7 Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
8 Spaepen, F. in Layered Structures. Epitaxy, and Interfaces, edited by Gibson, J. M. and Dawson, L. R. (Mater. Res. Soc. Proc. 37, Pittsburg, PA, 1985) p. 295306.Google Scholar
9 Brown, A. M. and Ashby, M. F., Acta Met. 28, 1085 (1980).Google Scholar
10 Springholz, G., Holzinger, A., Krenn, H., Clemens, H., Bauer, G., Böttner, H., Norton, P. and Maier, M., J. Cryst. Growth 113, 593 (1991).Google Scholar