Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-nd7s2 Total loading time: 0.344 Render date: 2021-05-11T14:56:22.959Z Has data issue: true Feature Flags: {}

Disordering of Si-Implanted GaAs-AlGaAs Superlattices by Rapid Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

S.-Tong Lee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
G. Braunstein
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
P. Fellinger
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
G. Rajeswaran
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
Get access

Abstract

We have studied the disordering phenomenon in GaAs-AlGaAs superlattices induced by Si implantation followed by rapid thermal annealing. Layer intermixing has been detected in superlattices implanted with 220 keV Si+ at doses ≥ 1×l015 cm−2 and annealed at 1050°C for 10 s. The amount of intermixing saturates with time after 10 s annealing, whence the lattice damage caused by the implantation is predominantly annealed out. The transient disordering is attributed to defect-induced layer intermixing occurring during the annealing of the implantation damage. Concurrent with the disordering, Si diffusion is observed to be minimal, which indicates that layer intermixing due to Si diffusion and other impurity effects lags behind that due to defects in the time scales of the present experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Laidig, W.D., Holonyak, N., Jr., Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).CrossRefGoogle Scholar
2. Laidig, W.D., Holonhak, N. Jr, Coleman, J.J., and Dapkus, P.D., J. Elect. Mat. 11, 1 (1982).CrossRefGoogle Scholar
3. Coleman, J.J., Dapkus, P.D., Kirkpatrick, C.G., Camras, M.D., and Holoyak, N. Jr, Appl. Phys. Lett. 40, 904 (1082).CrossRefGoogle Scholar
4. Gavrilovic, P., Meehan, K., Guido, L.J., Holonyak, N. Jr., Eu, V., Fend, M., and Burnham, R.D., Appl. Phys. Lett. 47, 903 (1985).CrossRefGoogle Scholar
5. Myers, D.R., Arnold, G.W., Zipperian, T.E., Dawson, L.R., Biefeld, R.M., Fritz, I.J., and Barnes, C.E., J. Appl. Phys. 60, 1131 (1986).CrossRefGoogle Scholar
6. Gavrilovic, P., Deppe, D.G., Meehan, K., Holionyak, N. Jr., Coleman, J.J., and Brunham, R.D., Appl. Phys. Lett. 47, 130 (1985).CrossRefGoogle Scholar
7. Hirayama, Y., Suzuki, Y., Tarucha, S., and Okamoto, H., Jpn. J. Appl. Phys. 24, L516 (1985).CrossRefGoogle Scholar
8. Tan, T.Y. and Goesele, U., J. Appl. Phys. 61, 1841 (1987).CrossRefGoogle Scholar
9. Cibert, J., Petroff, P.M., Werder, D.J., Pearton, S.J., Gossard, A.C., and English, J. H., Appl. Phys. Lett. 49, 223 (1986).CrossRefGoogle Scholar
10. Kash, K., Tell, B., Grabbe, P., Dobiaz, E.A., Craighead, H.G., and Tamargo, M.C., J. Appl. Phys. 63, 190 (1988).CrossRefGoogle Scholar
11. Konayashi, H., Fukunaga, T., Ishida, K., Nakashima, H., Flood, J.D., Bahir, G., and Merz, J. L., J. Appl. Phys. 50, 519 (1987).Google Scholar
12. Uematsu, M. and Yanagawa, F., Jpn. J. Appl. Phys. 26, L1407 (1987).CrossRefGoogle Scholar
13. Matsui, K., Takamori, T., Fukunaga, T., Narusawa, T., and Nakashima, H. H., Jpn. J. Appl. Phys. 26, 482 (1987).CrossRefGoogle Scholar
14. Kahan, K., Rajeswaren, G., and Lee, S.-T., Appl. Phys. Lett. 53, 1635 (1988)CrossRefGoogle Scholar
15. Venkatesan, T., Schwarz, S.A., Hwang, D.M., Bhat, R., Koza, M., Yoon, H.W., and Mei, P., Appl. Phys. Lett. 49, 701 (1986).CrossRefGoogle Scholar
16. Schwarz, S.A., Venkatesan, T., Hwang, D.M., Yoon, H.W., Bhat, R., and Arakawa, Y., Appl. Phys. Lett. 50, 281 (1987).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Disordering of Si-Implanted GaAs-AlGaAs Superlattices by Rapid Thermal Annealing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Disordering of Si-Implanted GaAs-AlGaAs Superlattices by Rapid Thermal Annealing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Disordering of Si-Implanted GaAs-AlGaAs Superlattices by Rapid Thermal Annealing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *