Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-08-01T11:26:13.543Z Has data issue: false hasContentIssue false

Direct Colorimetric Detection of Virus by a Polymerized Bilayer Assembly

Published online by Cambridge University Press:  15 February 2011

Deborah H. Charych
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA
Jon O. Nagy
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA
Wayne Spevak
Affiliation:
University of California, Berkeley, CA
Joel Ager
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA.
Mark D. Bednarski
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA.
Get access

Abstract

Screening and detecting virus by receptor-ligand interactions presents an important challenge in medical and environmental diagnostics, and in drug development. We have developed a direct colorimetric detection method based on a polymeric bilayer assembly. The bilayer is composed of a self-assembled monolayer of octadecyl siloxane and a Langmuir-Blodgett layer of polydiacetylene. The polydiacetylene layer is functionalized with receptor-specific ligands such as analogs of sialic acid. The ligand serves as a molecular recognition element, while the conjugated polymer backbone signals binding at the surface by a chromatic transition. The color transition is readily visible to the naked eye as a blue to red color change and can be quantified by visible absorption spectroscopy. The color transition can be inhibited by the presence of soluble inhibitors. Raman spectroscopic analysis shows that the color transition may arise from binding induced strain on the material resulting in bond elongation and conjugation length reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For a review see: Bloor, D., Chance, R.R., in Polydiacetylenes, NATO ASI Series E. Applied Sciences, (Martinus Nijhoff Publishers, 1985).Google Scholar

2 Cantow, H.J. in Advances in Polymer Science: Polydiacetylenes, 63, (Sspringer-Verlag, Berlin, 1984).CrossRefGoogle Scholar

3 Chance, R.R., Patel, G.N., Witt, J.D., J. Chem. Phys., 71, 206, (1979)CrossRefGoogle Scholar

4 Nallicheri, R.A., Rubner, M.F., Macromolecules, 24, 517, (1991).CrossRefGoogle Scholar

5 Chance, R.R., Macromolecules, 13, 396, (1980).Google Scholar

6 Mino, N., Tamura, H., Ogawa, K., Langmuir, 8, 594, (1992).CrossRefGoogle Scholar

7 Charych, D.H., Nagy, J.O., Spevak, W., Bednarski, M.D., Science, 261, 585, (1993)Google Scholar

8 Day, D., Ringsdorf, H., J. Polym. Sci., Polym. Lett. Ed., 16, 205, (1978).CrossRefGoogle Scholar

9 Spevak, W., Nagy, J.O., Charych, D.H., et al., J. Am. Chem. Soc., 115, 1146, (1993).CrossRefGoogle Scholar

10 Briggs, D., Seah, M.P., in Practical Surface Analysis. 2nd ed., (Wiley and Sons, Chichester, U.K., 1990).Google Scholar

11 Slaughter, J.M., Weber, W., Guntherodt, G., Falco, C.M., Materials Research Society Bulletin, 39, (1992)Google Scholar

12 Mino, N., Tamura, H., Ogawa, K., Langmuir, 7, 2336, (1991).CrossRefGoogle Scholar

13 Wenzel, M., Atkinson, G.H., J. Am. Chem. Soc., 111, 6123, (1989).CrossRefGoogle Scholar

14 Lieser, G., Tieke, B., Wegner, G., Thin Solid Films, 68, 77, (1980).Google Scholar

15 Fischetti, R.F., Filipkowski, M., Garity, A.F., Blaise, J.K., Phys. Rev. B., 37, 4714, (1988).CrossRefGoogle Scholar

16 Pritchett, T.J., Brossmer, R., Rose, U., Paulson, J.C., Virology, 160, 502, (1987).CrossRefGoogle Scholar

17 Sauter, N.K., et al., Biochemistry, 28, 8388, (1989).CrossRefGoogle Scholar

18 Batchelder, D.N., Bloor, D., in Advances in Infrared and Raman Spectroscopy, volume 11, Clark, R.J.H., Hester, R.E., eds., (Wiley, Heyden, 1984).Google Scholar

19 Mitra, V.K., Risen, W.M. Jr., Baughman, R.H., J. Chem. Phys., 66, 2731, (1977).Google Scholar