Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.296 Render date: 2021-07-24T03:02:49.292Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Diffusion Barriers for Mobile Ions in 256M DRAMs

Published online by Cambridge University Press:  10 February 2011

J. P. Gambino
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
C. C. Parks
Affiliation:
IBM Analytical Services, Hopewell Junction, NY 12533
S. Hegde
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
A. G. Domenicucci
Affiliation:
IBM Analytical Services, Hopewell Junction, NY 12533
Get access

Abstract

In this study, we investigate the diffusion of mobile ions through thin PSG or SiN layers using secondary ion mass spectrometry (SIMS). The diffusivity of Na through either layer is about 100,000X slower than through SiO2. Hence, thin layers of these materials are effective barriers for short anneals at 400°C. However, there is significant diffusion of both Na and K through these layers at 550°C. This suggests that improved cleans will be required to remove mobile ion contamination after interconnect processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Snow, E.H., Grove, A.S., Deal, B.E., Sah, C.T., J. Appl. Phys., 30, 1164 (1965).Google Scholar
2. Schnable, G.L., Schlesier, K.M., Wu, C.P., Comizzoli, R.B., J. Electrochem. Soc., 141, 3250 (1994).10.1149/1.2059313CrossRefGoogle Scholar
3. Akiya, H., Saito, K., Kobayashi, K., Jap. J. Appl. Phys., 20, 647 (1981).10.1143/JJAP.20.647CrossRefGoogle Scholar
4. Huynh, C.K. and Mitchener, J.C., J. Vac. Sci. Tech., B, 9 353 (1991).CrossRefGoogle Scholar
5. Onishi, S., Matsuda, K., Tanaka, K., Sakiyama, K., in “Semiconductor Cleaning Technology 1989, Ed. Ruzyllo, J. and Novak, R.E., Electrochemical Society, Inc., Pennington, N.J., vol. 90–9, 1990, p. 141.Google Scholar
6. Han, S.H., Kim, S.-Y., Ahn, H.-G., Kim, H.-J., Kim, J.-H., Lee, J.-G., Ko, C.-G., in “Chemical Mechanical Planarization”, Ed. Ali, I. and Raghavan, S., Electrochemical Society, Inc., Pennington, N.J., vol. 96–22, 1996, p. 27.Google Scholar
7. Aslam, M., Artz, B.E., Kaberline, S.L., Prater, T.J., IEEE Trans. Elec. Dev., 40, 292 (1993).CrossRefGoogle Scholar
8. Charache, G.W., Maby, E.W., Daubenspeck, T., Bakeman, P., J. Electrochem. Soc., 140, 1144 (1993).10.1149/1.2056213CrossRefGoogle Scholar
9. Wu, T.H., Teitler, N.D., Hemmes, D.G., Harrus, A.S., in “Chemical Vapor Deposition 1993, Ed. Jensen, K.F. and Cullen, G.W., Electrochemical Society, Inc., Pennington, N.J., vol. 93–2, 1993, p. 313.Google Scholar
10. Kaplan, L.H. and Lowe, M.E., J. Electrochem. Soc., 118 1649 (1971).10.1149/1.2407803CrossRefGoogle Scholar
11. Paulsen, R.E., Kyono, C. S., Wang, Y., Klein, K.M., Lim, I.-S., Tinkler, S., Bellamak, B., Odle, D.W., Zhou, Z., Dahl, P., Giovanetto, M., Makwana, J., Patel, S., Reno, C., Lenahan, P.M., Billman, C.A., IEEE Trans. Elec. Dev., 45, 655 (1998).10.1109/16.661227CrossRefGoogle Scholar
12. Osenbach, J.W. and Voris, S.S., J. Appl. Phys., 63, 4494 (1988).10.1063/1.340144CrossRefGoogle Scholar
13. Magee, C.W. and Harrington, W.L., Appl. Phys. Let., 33, 193 (1978).CrossRefGoogle Scholar
14. Frischat, G.H., J. Am. Ceram. Soc., 51, 528 (1968).CrossRefGoogle Scholar
15. Doremus, R.H., Phys. Chem. Glasses, 10 28 (1969).Google Scholar
16. Douglass, D.C., Duncan, T.M., Walker, K.L., Csencsits, R., J. Appl. Phys., 58, 197 (1985).10.1063/1.335708CrossRefGoogle Scholar
17. Araujo, R.J. and Fehlner, F.P., J. Non-Cryst. Sol., 197, 154 (1996).10.1016/0022-3093(95)00632-XCrossRefGoogle Scholar
18. Kahnt, H., J. Non-Cryst. Sol., 203, 225 (1996).CrossRefGoogle Scholar
19. Bothra, S., Pramanick, D., Qian, L.Q., Harvey, I., Baker, D., Weiling, M., Sethi, S., Gabriel, C., Sengupta, S., Sur, H., Lin, X.., Proc. VMIC Conf., 43 (1997).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diffusion Barriers for Mobile Ions in 256M DRAMs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Diffusion Barriers for Mobile Ions in 256M DRAMs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Diffusion Barriers for Mobile Ions in 256M DRAMs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *