Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-23T01:25:54.187Z Has data issue: false hasContentIssue false

Dielectrophoretic Assembly of Switchable Two-Dimensional Photonic Crystals with Specific Orientation

Published online by Cambridge University Press:  15 February 2011

Simon O. Lumsdon
Affiliation:
DuPont Central Research & Development, Experimental Station, Wilmington, DE 19880
Eric W. Kaler
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark, DE 19716
Orlin D. Velev
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

One and two-dimensional colloidal crystals are assembled from aqueous suspensions of latex and silica microspheres in an alternating electric field. These crystals of size up to 25 mm2 are formed in the gap between two planar gold electrodes. They have specific axis orientation parallel to the direction of the applied field without the need for expensive micropatterned templates. The field gradient causes the particles to accumulate on the surface between the two electrodes, align into rows along the field direction, and then crystallize into hexagonal arrays. The lattice spacing can be controlled via electrostatic repulsion. The system can find application in switchable photonic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Joannopoulos, D., Meade, R. D. and Winn, J. N., “Photonic Crystals: Molding the Flow of Light” (Princeton University Press, Princeton NJ, 1995).Google Scholar
2. Dinsmore, A. D., Crocker, J. C. and Yodh, A. G., Curr. Opin. Colloid Interface Sci. 3, 5 (1998).Google Scholar
3. Velev, O. D., “Handbook of Surfaces and Interfaces of Materials,” ed. Nalwa, H. S. (Academic, San Diego, 2001), Vol. 3, pp. 123169.Google Scholar
4. Colvin, V. L., MRS Bull. 26, 637 (2001).Google Scholar
5. Kim, E., Xia, Y. N. and Whitesides, G. M., Adv. Mater. 8, 245 (1996).Google Scholar
6. Blaaderen, A. van, Ruel, R. and Wiltzius, P., Nature (London) 385, 321 (1997).Google Scholar
7. Lin, K., Crocker, J. C., Prasad, V., Schofield, A., Weitz, D.A., Lubensky, T. C. and Yodh, A. G., Phys. Rev. Lett. 85, 1770 (2000).Google Scholar
8. Aizenburg, J., Braun, P. V. and Wiltzius, P., Phys. Rev. Lett. 84, 2997 (2000).Google Scholar
9. Trau, M., Saville, D.A. and Aksay, I. A., Science 272, 706 (1996).Google Scholar
10. Bohmer, M., Langmuir 12, 5747 (1996).Google Scholar
11. Solomentsev, Y., Bohmer, M. and Anderson, J. L., Langmuir 13, 6058 (1997).Google Scholar
12. Gong, T. and Marr, D. W. M., Langmuir 17, 2301 (2001).Google Scholar
13. Larsen, A. E. and Grier, D. G., Phys. Rev. Lett. 76, 3862 (1996).Google Scholar
14. Lumsdon, S. O., Kaler, E. W., Williams, J. P. and Velev, O. D., Appl. Phys. Lett. 82, 949 (2003).Google Scholar