Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-26T03:13:05.480Z Has data issue: false hasContentIssue false

Dielectric Relaxation Analysis of Water Adsorption in Sol Gel Derived Silica Gel Monoliths

Published online by Cambridge University Press:  25 February 2011

S. Wallace
Affiliation:
University of Florida, Advanced Materials Research Center, One Progress Blvd. #14, Alachua, FL 32615
L. L. Hench
Affiliation:
University of Florida, Advanced Materials Research Center, One Progress Blvd. #14, Alachua, FL 32615
Get access

Abstract

The polarization mechanism of the low frequency dielectric relaxation (R1) observed in water adsorbed in porous silica gel is investigated using monolithic samples. It is attributed to electrode polarization involving proton hopping conduction. The influence of the thickness of the adsorbed water layer on the relaxation mechanism is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zarzychi, J., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L.L. and Ulrich, D.R. (J. Wiley, New York, 1984), p 27.Google Scholar
2. Wallace, S. and Hench, L.L., in Proceedings of the International Conference on Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Mackenzie, J.D. and Ulrich, D. (J. Wiley, NY, 1988).Google Scholar
3. Kamiyoshi, K. and Odake, T., Sci. Rep. Res. Inst. Tohuka Univ. 5, 271 (1953); J. Chem. Phys. 21, 1295 (1953).Google Scholar
4. Kondo, S. and Muroya, M., Bull. Chem. Soc. Japan 42, 1165 (1969); 42, 2724 (1969).Google Scholar
5. Dushchenko, V.P. and Romanovskii, I.A., Russ. J. Phys. Chem. 44, 826 (1970).Google Scholar
6. Hall, P.G., Williams, R.T. and Slade, R.C.T., Chem, J.. Soc. Far. Trans. 1, 81, 847 (1985).Google Scholar
7. Wacrenier, J.M., Fontaine, J., Chapertone, A. and Lebrun, A., Rev. Gen. Elec. 76, 719 (1967).Google Scholar
8. Fontaine, J. and Vandorpe, B., Bull. Soc. Chim. France 3, 872 (1970); C. R. Acad. Sc. Serie B 266, 1227 (1968).Google Scholar
9. Gengembre, L., Fontaine, J. and Vandorpe, B., Acad, C. R.. Sc. Paris, Serie C, 277, 477 (1973).Google Scholar
10. Thorp, J.M. and Nair, N.K., Trans. Far. Soc. 61, 962, 975, (1965); 65, 1741 (1969).Google Scholar
11. Gengembre, L., Chaperton, A., Vandorpe, B., Acad, C. R.. Sc. Paris, Serie C, 284, 541 (1977); J. Chimie Phys. 76, 959 (1979).Google Scholar
12. Zhilenkov, I.V. and Nekrasova, E.G., Russ. J. Phys. Chem. 47, 93 (1973); 49, 406 (1975); 54, 1503 (1980); 46, 913 (1972).Google Scholar
13. McCafferty, E., J. Phys. Chem. 82, 2044 (1978).Google Scholar
14. Anderson, J.H. and Parks, G.A., J. Phys. Chem. 72, 3662 (1968).Google Scholar
15. Kawasaki, K. and Hackerman, N., Jap. J. App. Phys. 6, 1184 (1967).Google Scholar
16. Soffer, A. and Folman, M., Trans. Far. Soc. 62, 3559 (1966).Google Scholar
17. Zimmerman, J. R. and Lasater, L. A., J. Phys. Chem. 62, 1157 (1958).Google Scholar