Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-ttsf8 Total loading time: 0.316 Render date: 2021-08-02T13:01:10.464Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs

Published online by Cambridge University Press:  28 June 2013

Cheng-Ying Huang
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.
Jeremy J. M. Law
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.
Hong Lu
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
Mark J. W. Rodwell
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.
Arthur C. Gossard
Affiliation:
Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A. Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

We investigated AlAs0.56Sb0.44 epitaxial layers lattice-matched to InP grown by molecular beam epitaxy (MBE). Silicon (Si) and tellurium (Te) were studied as n-type dopants in AlAs0.56Sb0.44 material. Similar to most Sb-based materials, AlAs0.56Sb0.44 demonstrates a maximum active carrier concentration around low-1018 cm-3 when using Te as a dopant. We propose the use of a heavily Si-doped InAlAs layer embedded in the AlAsSb barrier as a modulation-doped layer. The In0.53Ga0.47As/AlAs0.56Sb0.44 double heterostructures with a 10 nm InGaAs well show an electron mobility of about 9400 cm2/V・s at 295 K and 32000 cm2/V・s at 46 K. A thinner 5 nm InGaAs well has an electron mobility of about 4300 cm2/V・s at 295 K. This study demonstrates that AlAs0.56Sb0.44 is a promising barrier material for highly scaled InGaAs MOSFETs and HEMTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., J. Appl. Phys. 89, 5815 (2001).CrossRef
Ted Masselink, W., Appl. Phys. Lett. 67, 801 (1995).CrossRef
Nakata, Y., Sugiyama, Y., Inata, T., Ueda, O., Sasa, S., Muto, S., and Fujii, T., Mater. Res. Soc. Symp. Proc. 198, 289 (1990).CrossRef
Georgiev, N., and Mozume, T., J. Appl. Phys. 89, 1064 (2001).CrossRef
Kobayashi, K., Kamata, N., and Suzuki, T., Mater. Res. Soc. Symp. Proc. 56, 61 (1986).CrossRef
Bennett, B. R., Moore, W. J., Yang, M. J., and Shanabrook, B. V., J. Appl. Phys. 87, 7876 (2000).CrossRef
Bolognesi, C. R., Bryce, J. E., and Chow, D. H., Appl. Phys. Lett. 69, 3531 (1996).CrossRef
Bennett, B. R., Yang, M. J., Shanabrook, B. V., Boos, J. B., and Park, D., Appl. Phys. Lett. 72, 1193 (1998).CrossRef
Arora, V. K., and Naeem, A., Phys. Rev. B 31, 3887 (1985).CrossRef
Price, P. J., Ann. Phys. 133, 217 (1981).CrossRef
Ridley, B. K., J. Phys. C 15, 5899 (1982).CrossRef
Gold, A., Phys. Rev. B 35, 723 (1987).CrossRef
Chattopadyay, D., Phys. Rev. B 31, 1145 (1985).CrossRef
Ikarashi, N., Tanaka, M., Sakaki, H., and Ishida, K., Appl. Phys. Lett. 60, 1360 (1992).CrossRef
Petroff, P. M., Miller, R. C., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 44, 217 (1984).CrossRef
Bolognesi, C. R., Kroemer, H., and English, J. H., Appl. Phys. Lett. 61, 213 (1992).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *