Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-5kt27 Total loading time: 0.178 Render date: 2021-09-24T02:59:45.510Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Development and Application of High-Efficiency Low-Cost Silicon Thin Film Solar Cell

Published online by Cambridge University Press:  29 April 2015

Xueshi Tan
Affiliation:
Hunan Gongchuang Photovoltaic Science and Technology Co.,Ltd, No.1 Hongyuan Road, Baishazhou Industry Park, Hengyang City, Hunan Province, PR China, 421005
Bingxue Mao
Affiliation:
Hunan Gongchuang Photovoltaic Science and Technology Co.,Ltd, No.1 Hongyuan Road, Baishazhou Industry Park, Hengyang City, Hunan Province, PR China, 421005
Feng Zhang
Affiliation:
Hunan Gongchuang Photovoltaic Science and Technology Co.,Ltd, No.1 Hongyuan Road, Baishazhou Industry Park, Hengyang City, Hunan Province, PR China, 421005
Jingjing Yang
Affiliation:
Hunan Gongchuang Photovoltaic Science and Technology Co.,Ltd, No.1 Hongyuan Road, Baishazhou Industry Park, Hengyang City, Hunan Province, PR China, 421005
Get access

Abstract

For the industrial application of silicon thin film solar cells, the current focus is on how to realize high-efficiency low-cost production process and minimize light-induced degradation effect, thus effectively reducing the balance-of-system (BOS) costs of system integration. In this paper, a brief introduction based on our development and application in this area is presented, highlighting in the achievement of some layers in a-Si:H/μc-Si:H tandem solar cell by optimizing the property of single layers, such as amorphous intrinsic layer, intermediate reflective layer and microcrystalline intrinsic layer. After transferring the process achievement to the industrial production line, we obtained the low-cost thin-film silicon solar cells with high photovoltaic conversion efficiency of 10.2%.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ringbeck, S., Sutterlüti, J., Proc. of 27th EU-PVSEC, 29612975 (2012)
KOŁODZIEJ, A., Opto-Electronics REVIEW 12(1), 2132 (2004)
Fecioru-Morariu, M., Mereu, B., Bakehe, S., Kalas, J., Kluth, O., and Eisenhammer, T., Journal of Non-Crystalline Solids 358, 2264 (2012)CrossRef
Buehlmann, P. Bailat, J., Feltrin, A., Ballif, C., Mater. Res. Soc. Symp. Proc. 1123, 0309 (2009)
Lihui, Guo, Rongming, Lin, Thin Solid Films 376, 249254 (2000)CrossRef
Vetterl, O., Fillger, F., Carius, R., Hapke, P., Hoube, L., Kluth, O., Lambertz, A., Muck, A., Rech, B., Wagner, H., Solar Energy Materials & Solar cells 62, 97108 (2000)CrossRef
Ding, L., Nicolay, S., Bugnon, G., Benkhaira, M., Ballif, C., Proc. of 25th EU-PVSEC, 29432946 (2010)
Fecioru-Morariu, M., Mereu, B., Kalas, J., Hötzel, J., Losio, P.A., Kupich, M., Kluth, O., Eisenhammer, T., Proc. of 25th EU-PVSEC, 2947-2950 (2010)
Vavruková, V., Müllerová, J., Šutta, P., Advances in Electrical and Electronic Engineering, 108111 (2007)
Kiess, H, Rehwald, W., Solar Energy Materials & Solar Cells 38(1–4), 4555 (1995)CrossRef
Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., Shah, A., Solar Energy Materials & Solar Cells 81, 6171 (2004)CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Development and Application of High-Efficiency Low-Cost Silicon Thin Film Solar Cell
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Development and Application of High-Efficiency Low-Cost Silicon Thin Film Solar Cell
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Development and Application of High-Efficiency Low-Cost Silicon Thin Film Solar Cell
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *