Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qp9dn Total loading time: 0.139 Render date: 2021-06-21T13:26:33.052Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Determination of the Physical Properties of Oil Sands Components using Scanning Probe Microscopy

Published online by Cambridge University Press:  16 March 2015

Ravi Gaikwad
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Tinu Abraham
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Aharnish Hande
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Fatemeh Bakhtiari
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Siddhartha Das
Affiliation:
Department of Mechanical Engg, University of Maryland, Baltimore
Thomas Thundat
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Get access

Abstract

Atomic force microscopy is employed to study the structural changes in the morphology and physical characteristics of asphaltene aggregates as a function of temperature. The exotic fractal structure obtained by evaporation-driven asphaltene aggregates shows an interesting dynamics for a large range of temperatures from 25°C to 80°C. The changes in the topography, surface potential and adhesion are unnoticeable until 70°C. However, a significant change in the dynamics and material properties is displayed in the range of 70°C - 80°C, during which the aspahltene aggregates acquire ‘liquid-like’ mobility and fuse together. This behaviour is attributed to the transition from the pure amorphous phase to a crystalline liquid phase which occurs at approximately 70°C as shown by using Differential Scanning Calorimetry (DSC). Additionally, the charged nature of asphaltenes and bitumen is also explored using kelvin probe microscopy. Such observations can lead to the development of a rational approach to the fundamental understanding of asphaltene aggregation dynamics and may help in devising novel techniques for the handling and separation of asphaltene aggregates using dielectrophoretic methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Strausz, O.P., Fuels 22 (1977) 171.
De Bataafsche, L.N.V., Maatschappij, P., in:, Sixt. Colloid. Symp., 1939, pp. 139149.
Binnig, G., Quate, C., Gerber, C., Phys. Rev. B 56 (1986) 930.
Yarranton, H.W., Ortiz, D.P., Barrera, D.M., Baydak, E.N., Barre, L., Frot, D., Eyssautier, J., Zeng, H., Xu, Z., Dechaine, G., Becerra, M., Shaw, J.M., Mckenna, A.M., Mapolelo, M.M., Bohne, C., Yang, Z., Oake, J., Energy & Fuels 27 (2013) 5088.CrossRef
Toulhoat, H., Prayer, C., Rouquet, G., Colloids Surfaces A Physicochem. Engg Asp. 91 (1994) 267.CrossRef
Zhang, L.Y., Lawrence, S., Xu, Z., Masliyah, J.H., J. Colloid Interface Sci. 264 (2003) 128.CrossRef
Drummond, C., Israelachvili, J., J. Pet. Sci. Eng. 45 (2004) 61.CrossRef
Zhang, L.Y., Breen, P., Xu, Z., Masliyah, J.H., Energy & Fuels 21 (2007) 274.CrossRef
Sabbaghi, S., Shariaty-Niassar, M., Ayatollahi, S., Jahanmiri, A., J. Microsc. 231 (2008) 364.CrossRef
Ese, M.H., Sjoblom, J., Djuve, J., Pugh, R., Colloid Polym. Sci. 278 (2000) 532.CrossRef
Mehranfar, M., Gaikwad, R., Das, S., Mitra, S.K., Thundat, T., Langmuir 30 (2014) 800.CrossRef
Sourty, E.D., Tamminga, a Y., Michels, M. a J., Vellinga, W.-P., Meijer, H.E.H., J. Microsc. 241 (2011) 132.CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Determination of the Physical Properties of Oil Sands Components using Scanning Probe Microscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Determination of the Physical Properties of Oil Sands Components using Scanning Probe Microscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Determination of the Physical Properties of Oil Sands Components using Scanning Probe Microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *