Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T11:16:43.189Z Has data issue: false hasContentIssue false

Determination of Ionic Diffusion Mechanisms in Solids

Published online by Cambridge University Press:  10 February 2011

John Corish*
Affiliation:
Department of Chemistry, Trinity College, University of Dublin, Dublin 2, IRELAND
Get access

Abstract

The experimental and atomistic simulation methodologies by which microscopic diffusion mechanisms can be determined in solids are described. Measurement of the Haven Ratio requires evaluation of the diffusion coefficient and of the ionic conductivity for the species in pure and doped specimens and is, in practice, limited to simpler materials. Atomistic simulations using lattice statics, molecular dynamics and Monte Carlo techniques can yield very detailed information on the pathways followed by migrating ions and are being utilised more extensively for this purpose. Examples of such experimental and simulation studies are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bardeen, J. and Herring, C., in Imperfections in nearly perfect crystals, edited by Shockley, W., Hollomon, J.H., Maurer, R. and Seitz, F., (Wiley, New York, 1952) p.261.Google Scholar
2. Mehrer, H., in Diffusion in Solid Metals and Alloys, (edited by Mehrer, H.) Landolt-Bornstein, Vol 26, (Springer Verlag, Berlin 1990) p. 1.Google Scholar
3. LeClaire, A.D., in Physical Chemistry–an advanced treatise, Vol 10, edited by Eyring, H., Henderson, D. and Jost, W. (Academic; New York, 1970) p. 261.Google Scholar
4. Murch, G.E., in Diffusion in Crystalline Solids, edited by Murch, G.E. and Nowick, A.S., (Academic, New York, 1984) p. 379.Google Scholar
5. Chadwick, A.V. and Corish, J., in Defects in Solids-Modern Techniques, edited by Chadwick, A.V. and Terenzi, M. (Plenum Press, New York, 1986) p. 395.Google Scholar
6. Norgett, M.J., UKAEA Report, R7650 (1974).Google Scholar
7. Catlow, C.R.A., Diller, K.M. and Norgett, M.J., J.Phys.C. 10 1395 (1977).Google Scholar
8. Corish, J., Jacobs, P.W.M. and Radhakrishna, S. in Specialist Periodical Reports–Surface and Defect Properties of Solids edited by Roberts, M.W. and Thomas, J.M. (The Chemical Society, London, 1977), Vol 6, p.218 Google Scholar
9. Ewald, P.P., Ann. Physik., 64 253 (1921).Google Scholar
10. Stoneham, A.M. and Harding, J.H., Ann. Rev. Phys. Chem. 37 53 (1986)Google Scholar
11. Axilrod, B.M. and Teller, E., J. Chem. Phys., 11 299 (1943)Google Scholar
12. Baetzold, R.C., Catlow, C.R.A., Corish, J., Healy, F.M., Jacobs, P.W.M., Leslie, M. and Tan, Y., J. Phys. Chem. Solids, 50,791 (1958).Google Scholar
13. Dick, B.G. and Overhauser, A. W., Phys.Rev., 112 90 (1958).Google Scholar
14. Catlow, C.R.A., in New Trends in Materials Chemistry, edited by Catlow, C.R.A. and Cheetham, A. (Kluwer Academic Publishers, Amsterdam, 1997) p. 141.Google Scholar
15. Murch, G.E., Catlow, C.R.A. and Murray, A.D., Solid State Ionics, 18–19 196 (1986).Google Scholar
16. Mott, N.F. and Littleton, M.J., Trans. Faraday Soc., 34 485 (1938).Google Scholar
17. Jacobs, P.W.M., Rycerz, Z.A. and Mosanski, J., Adv. Sol. State Chem., 2 113 (1991).Google Scholar
18. Islam, M.S., this volume.Google Scholar
19. Hooten, I.E. and Jacobs, P.W.M., J. Phys. Chem. Solids, 51 1207 (1990).Google Scholar
20. Catlow, C.R.A., Corish, J. and Jacobs, P.W.M., J. Phys. C: Solid State Physics, 12 3433 (1979).Google Scholar
21. Murch, G.E., Solid State Ionics, 7 177 (1982).Google Scholar
22. Allnatt, A.R. and Lidiard, A.B., Atomic Transport in Solids (Cambridge University Press, 1993).Google Scholar
23. Beaumont, J.H. and Jacobs, P.W.M., J. Chem. Phys., 45 1496 (1966).Google Scholar
24. Bénière, F. in Diffusion in Semiconductors and Non-Metallic Solids, edited by Landolt-Bornstein, D.L. Beke, Volume 33 (Springer Verlag, Berlin)–to be published.Google Scholar
25. Manning, P.S., Sirman, J.D., Souza, R.A. De and Kilner, J. A., Solid State Ionics, 100 1 (1997).Google Scholar
26. Figueroa, D.R., Chadwick, A.V. and Strange, J.H., J. Phys. C, 11 55 (1958).Google Scholar
27. Koch, E. and Wagner, C., Z. Phys. Chem. (Leipzig) 38 295 (1937).Google Scholar
28. Teltow, J., Ann. Phys. (Leipzig) 5 63 (1949).Google Scholar
29. Corish, J., J. Chem. Soc., Faraday Trans 2, 85 437 (1989).Google Scholar
30. Tubandt, C. and Reinhold, H., Z. Elektrochem, 29 313 (1923); ibid 31 84 (1925).Google Scholar
31. Fouchaux, R.D. and Simmons, R.O., Phys. Rev., 136, A1664 (1964).Google Scholar
32. Abbink, H.C. and Martin, D. S. Jr , J. Phys. Chem. Solids, 27 205 (1966).Google Scholar
33. Corish, J. and Mulcahy, D.C.A., J. Phys. C., 13 6459 (1980).Google Scholar
34. Gracey, J. P. and Friauf, R.J., J. Phys. Chem. Solids 30 421 (1969).Google Scholar
35. Weber, M.D. and Friauf, R.J., J. Phys. Chem. Solids, 30 407 (1969).Google Scholar
36. Hove, J.E., Phys. Rev. 102 915 (1956).Google Scholar
37. Corish, J. and Jacobs, P.W.M., J. Phys. Chem. Solids, 33 1799 (1972).Google Scholar
38. Batra, A. P. and Slifkin, L., Phys. Rev. B, 12 3473 (1975).Google Scholar
39. Batra, A. P. and Slifkin, L., J. Phys. Chem. Solids 38 687 (1977).Google Scholar
40. Catlow, C.R.A., Corish, J., Jacobs, P.W.M. and Lidiard, A.B., J. Phys. C., 14, L121 (1981).Google Scholar
41. Jacobs, P.W.M., Corish, J., Devlin, B.A. and Catlow, C.R.A. in Fast Ion Transport in Solids, edited by Vashista, P., Mundy, J.N. and Shenoy, G.K. (Elsevier, New York, 1979) p.589 Google Scholar
42. Devlin, B.A. and Corish, J., J. Phys. C, 20 705 (1987).Google Scholar
43. Nield, V.M. and Hayes, W., Defect and Diffusion Forum, 125–126 37 (1995).Google Scholar
44. Nelson, V.C. and Friauf, R.J., J. Phys. Chem. Solids, 31 825 (1970).Google Scholar
45. Bénière, M., Chemla, M. and Bénière, F., J. Phys. Chem. Solids, 37 525 (1976).Google Scholar
46. Jacobs, P.W.M. in Diffusion in Materials edited by Laskar, A.L., Bucquet, J.L., Brebec, G. and Monty, C., (Kluwer Academic Publishers, Dordrecht, 1990) p.203.Google Scholar
47. Acuna, L.A. and Jacobs, P.W.M., J. Phys. Chem. Solids, 41 595 (1980).Google Scholar
48. Fuller, R.G., Phys. Rev., 142 524 (1966).Google Scholar
49. Hooten, I.E. and Jacobs, P.W.M., J. Phys. Chem. Solids, 51 1207 (1990).Google Scholar
50. Jacobs, P.W.M. and Vernon, M. L., J. Phys. Chem. Solids, 58 1007 (1997).Google Scholar
51. Avai, G. and Mullen, J., Phys. Rev. 143 663 (1966).Google Scholar
52. Hoodless, I.M. and Turner, R.G., Phys. Status Solidi, A11, K55 (1972).Google Scholar
53. Chadwick, A.V., Int. Revs. in Phys. Chem., 7 251 (1980).Google Scholar
54. EGordon, R. and Strange, J.H., Faraday Symp. Chem. Soc., 13 154 (1979).Google Scholar
55. Gordon, R.E. and Strange, J.H., J. Phys.C, 11 3213 (1978).Google Scholar
56. Carr, V.M., Chadwick, A.V. and Saghafian, R., J. Phys. C. 11, L637 (1978).Google Scholar
57. Chemla, M., Ann. Phys. (Paris) 1 959 (1956).Google Scholar
58. Peterson, N.L. in Diffusion in Solids, Recent Developments, edited by Nowick, A.S. and Burton, J.J., (Academic Press, New York, 1975) p.115.Google Scholar
59. Rothman, S.J. in Diffusion in Crystalline Solids, edited by Murch, G.E. and Nowick, A.S. (Academic Press, New York, 1984) p. 1 Google Scholar
60. Harding, J.H., Rep. Prog. Phys., 53 1403 (1990).Google Scholar
61. Catlow, C.R.A., Corish, J., Hennessy, J. and Mackrodt, W.C., J. Am. Ceram. Soc., 71 42 (1988).Google Scholar
62. Lewis, G.V., Catlow, CR.A. and Cormack, A.N., J. Phys. Chem. Solids, 46 1227 (1985).Google Scholar
63. Becker, K.D. and Wurmb, V. von, Z. Phys. Chem. Neue Folge, 149 77 (1986).Google Scholar
64. Cherry, M., Islam, M.S. and Catlow, C. R. A., J. Solid State Chem., 118 125 (1995); ibid 124 230 (1996).Google Scholar
65. Morton-Blake, D. A., Corish, J. and Bénière, F., Phys. Rev. B., 37 4180 (1988).Google Scholar
66. Morton-Blake, D.A. and Corish, J. in Electroactive Polymer Electrochemistry Part 2: Methods and Applications edited by Lyons, M.E.G. (Plenum Press, New York, 1996, p. 1.Google Scholar
67. Wolf, M.L., Walker, J.R. and Catlow, C.R.A., J. Phys.C, 17 6623 (1984).Google Scholar
68. Wolf, M.L. and Catlow, C.R.A., J. Phys. C, 17 6635 (1984).Google Scholar
69. Cox, P.A., Ph.D. Thesis, University of Keele, (1989).Google Scholar
70. Cox, P.A., Catlow, C.R.A. and Chadwick, A.V., J. Mater. Sci., 29, 2725 (12994).Google Scholar
71. Zhang, X. and Catlow, C.R.A., Phys. Rev. B., 47 5315 (1993).Google Scholar
72. Catlow, C.R.A., J. Chem. Soc. Faraday Trans., 86 1167 (1990).Google Scholar
73. Dixon, M. and Gillan, M.J., in Computer Simulation of Solids, Lecture Notes in Physics edited by Catlow, C.R.A. and Mackrodt, W.C. (Springer, New York, 1982) p.275.Google Scholar
74. Gerhardt-Anderson, R. and Nowick, A.S., Solid State Ionics, 5 547 (1981).Google Scholar
75. Butler, V., Catlow, C.R.A., Fender, B.E.F. and Harding, J.H., Solid State Ionics, 8 109 (1983).Google Scholar
76. Wang, D.Y., Park, D.S., Griffith, J. and Nowick, A.S., Solid State Ionics 2 95 (1981).Google Scholar
77. Goodbody, S.J., Watanabe, K., MacGowan, D., Walton, J.R.P.B. and Quirke, N., J.Chem. Soc. Faraday Trans., 87 1951 (1991).Google Scholar
78. Hernandez, E. and Catlow, C.R.A., Proc. Roy. Soc. Lond. A, 448 143 (1995).Google Scholar