Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-tf7pm Total loading time: 0.219 Render date: 2021-05-18T09:03:04.718Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Design and Characterization of a Magnetorheological Damper for Vibration Mitigation during Milling of Thin Components

Published online by Cambridge University Press:  02 March 2016

S. Puma-Araujo
Affiliation:
Department of Mechanical Engineering, Tecnológico de Monterrey, ITESM, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, México.
D. Olvera-Trejo
Affiliation:
School of Engineering and Science, Tecnológico de Monterrey, ITESM, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, México.
A. Elías-Zuñiga
Affiliation:
School of Engineering and Science, Tecnológico de Monterrey, ITESM, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, México.
O. Martínez-Romero
Affiliation:
School of Engineering and Science, Tecnológico de Monterrey, ITESM, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, México.
C.A. Rodríguez
Affiliation:
School of Engineering and Science, Tecnológico de Monterrey, ITESM, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, México.
Get access

Abstract

The aerospace and automotive industries demand the development of new manufacturing processes. The productivity during machining of very flexible aerospace and automotive aluminum components is limited for self-excited vibrations. New solutions are needed to suppress vibrations that affect the accuracy and quality of the machined surfaces. Rejection of one piece implies an increase in the manufacturing cost and time. This paper is focused on the design, manufacturing and characterization of a magnetorheological damper. The damper was attached to a thin-floored component and a magnetic field was controlled in order to modify the damping behavior of the system. The dynamics of the machining process was developed by considering a three-degree-of-freedom model. This study was experimentally validated with a bull-nose end milling tool to manufacture monolithic parts with thin wall and thin floor. Experimental tests and characterization of the magnetorheological damper permitted to improve the surface finish and productivity during the machining of thin-floored components. A further aim of this paper was to develop a rheological damper by using magnetorheological fluids (MR) to change the thin floor rigidity with voltage. The stability of the milling process was also analytically described considering one, two or three degrees of freedom, using a mathematical integration model based on the Enhanced Multistage Homotopy Perturbation Method (EMHPM).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Boeing 787, Composite in the airframe and primary structure, retrieved from http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html.
Sims, N.D. and Zhang, Y., in Smart Structures and Materials 2004: Smart Structures and Integrated Systems , edited by Flatau, Alison B., (Proc. SPIE 5390, Bellingham, WA, 2004), pp. 335346.
Winfough, W.R. PhD. Thesis, University of Florida, 1995.
Zatarain, M., Bediaga, I., Muñoa, J. and Lizarralde, R., CIRP Ann. Manuf. Techn. 57, 379384 (2008).CrossRef
Segalman, D. and Redmond, J., in Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies , edited by Crowe, C.R., (Proc. SPIE 2721, Bellingham, WA, 1996), pp. 353363.
Campa, F. PhD. Thesis, Faculty of Engineering of Bilbao, Universidad del País Vasco (UPV/EHU), Spain, 2010.
Altintas, Y. and Budak, E., CIRP Ann. Manuf. Techn. 44, 717723 (1995).CrossRef
Olvera, D. and Elías-Zúñiga, A., in Proc. of 13th Conference on Nonlinear Vibrations, Dynamics, and Multibody Systems , (Virginia Polytechnic Institute and State University, Blacksburg, VA, 2010).

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Design and Characterization of a Magnetorheological Damper for Vibration Mitigation during Milling of Thin Components
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Design and Characterization of a Magnetorheological Damper for Vibration Mitigation during Milling of Thin Components
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Design and Characterization of a Magnetorheological Damper for Vibration Mitigation during Milling of Thin Components
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *