Hostname: page-component-6b989bf9dc-mbg9n Total loading time: 0 Render date: 2024-04-14T09:09:01.832Z Has data issue: false hasContentIssue false

Dependences of Structural Parameters on the Characteristics of Poly-Si Thin-Film Transistors after Plasma Passivation

Published online by Cambridge University Press:  01 February 2011

Cheng-Ming Yu
Affiliation:
Institute of Electronics, National Chiao Tung University, 1001Ta-Hsueh Road, Hsinchu, Taiwan, ROC.
Tiao-Yuan Huang
Affiliation:
Institute of Electronics, National Chiao Tung University, 1001Ta-Hsueh Road, Hsinchu, Taiwan, ROC.
Tan-Fu Lei
Affiliation:
Institute of Electronics, National Chiao Tung University, 1001Ta-Hsueh Road, Hsinchu, Taiwan, ROC.
Horng-Chih Lin
Affiliation:
National Nano Device Labs, 1001-1 Ta-Hsueh Road, Hsinchu, Taiwan, 30050, R.O.C.
Get access

Abstract

The effects of NH3 and H2 plasma passivation on the characteristics of poly-Si thin-film transistors with source/drain extensions induced by a bottom sub-gate were studied. Our results show that significant improvements in device performance can be obtained by both passivation methods. Moreover, NH3-plasma-treatment appears to be more effective in reducing the off-state leakage, subthreshold swing, compared to H2 plasma passivation. NH3 plasma treatment is also found to be more effective in reducing the anomalous subthrehold hump phenomenon observed in non-plasma-treated short-channel devices. Detailed analysis suggests that all these improvements can be explained by the more effective passivation of the traps distributed in both the front and back sides of the channel by NH3 plasma treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, I. W., Tech. Dig. Active Matrix Liquid Crystal Display, 7 (1995).Google Scholar
2. Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., IEEE Trans. Electron Devices, 36, 1929 (1989).Google Scholar
3. Wu, I. W., Jackson, W. B., Huang, T. Y., Lewis, A. G., and Ciang, A., IEEE Electron Device Lett., 12, 181 (1991).Google Scholar
4. Hawkins, W. G., IEEE Trans. Electron Devices, 33, 477 (1986).Google Scholar
5. Fossum, J. G., Conde, A. O., Shichijo, H., and Banerjee, S. K., IEEE Trans. Electron Devices, 33, 1518 (1986).Google Scholar
6. Baert, K., Murai, H., Kobayashi, K., Namizaki, H. and Nunoshita, M., Jpn. J. Appl. Phys., 32, 2601 (1993).Google Scholar
7. Yin, A. and Fonash, S. J., IEEE Electron Device Lett., 15, 502 (1994).Google Scholar
8. Tsai, M. J., Wang, F. S., Cheng, K. L., Wang, S. Y., Feng, M. S., and Chen, H. C., Solid State Electronics, 38, 1233 (1995).Google Scholar
9. Yang, C. K., Lei, T. F., and Lee, C. L., IEDM Tech Dig., 505 (1994).Google Scholar
10. Yang, C. K., Lei, T. F., and Lee, C. L., IEEE Electron Device Lett., 15, 389 (1994).Google Scholar
11. Cheng, H. C., Wang, F. S. and Huang, C. Y., IEEE Trans. Electron Devices, 44, 64 (1997).Google Scholar
12. Huang, T. Y., Wu, I. W., Lewis, A. G., Chiang, A., and Bruce, R. H., IEEE Electron Device Lett., 11, 244 (1990).Google Scholar
13. Lin, H. C., Yu, M., Lin, C. Y., Yeh, K. L., Huang, T. Y., and Lei, T. F, IEEE Electron Device Lett., 22, 26 (2001).Google Scholar
14. Yu, M., Lin, H. C., Chen, G. H., Huang, T. Y., and Lei, T. F., Jpn. J. appl. Phys., Part 1, 5A, 41, 1 (2002).Google Scholar
15. Madan, Sudhir K., and Antoniadis, Dimitri A., IEEE Trans. Electron Devices, 33, 1518 (1986).Google Scholar
16. Jackson, W. B., Johnson, N. M., Tsai, C. C., Wu, I. W., Chiang, A., and Smith, D., Appl. Phys. Lett., 61, 1670 (1992).Google Scholar