Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T02:12:59.258Z Has data issue: false hasContentIssue false

Damage Nucleation in Si During Ion Irradiation

Published online by Cambridge University Press:  25 February 2011

O. W. Holland
Affiliation:
Microelectronics Center of North Carolina, P.O. Box 12889, Research Triangle Park, NC 27709
D. Fathy
Affiliation:
Microelectronics Center of North Carolina, P.O. Box 12889, Research Triangle Park, NC 27709
J. Narayan
Affiliation:
Microelectronics Center of North Carolina, P.O. Box 12889, Research Triangle Park, NC 27709
Get access

Abstract

Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bauer, L-O., p. 70 in Ion Implantation in Semiconductors, ed. by I., Ruge and J., Graul, Springer-Verlag, Berlin (1971); N.G. Blamires, in Ion Implantation in Semiconductors, ed. by I. Ruge and J. Graul, Springer-Verlag, Berlin (1971); p. 119.10.1007/978-3-642-80660-5_11CrossRefGoogle Scholar
[2] Narayan, J., p. 491 in Defects in Semiconductors, ed. by S., Mahajan and J.W., Corbett, Elsevier, New York (1983).Google Scholar
[3] Dennis, J.R. and Hale, E.B., Rad. Effects, 30 219 (1976).10.1080/00337577608240825Google Scholar
[4] Morehead, F.F. and Crowder, B.L., Rad. Effects, 6 27 (1970).10.1080/00337577008235042CrossRefGoogle Scholar
[5] Dennis, J.R. and Hale, E.B., Rad. Effects, 19 67 (1973).10.1080/00337577308232220Google Scholar
[6] Mitchell, J.B., Davies, J.A., Howe, L.M., Walker, R.S., Winterbon, K.B., Foti, G. and Moore, J.A., p. 493 in Ion Implantation in Semiconductors, ed. by Namba, S., Plenum Press, New York (1974).Google Scholar
[7] Davies, J.A., Foti, G., Howe, L.M., Mitchell, J.B. and Winterbon, K.B., Phys. Rev. Lett., 34 1441 (1975).10.1103/PhysRevLett.34.1441Google Scholar
[8] Swanson, M.L., Parsons, J.R. and Hoelke, C.W., Rad. Effects, 9 249 (1971)10.1080/00337577108231056CrossRefGoogle Scholar
[9] Christel, L.A., Gibbons, J.F. and Sigmon, T.W., J. of Appl. Phys., 52 7143 (1981).10.1063/1.328688CrossRefGoogle Scholar
[10] Narayan, J., Fathy, D., Oen, O.S. and Holland, O.W., J. of Vac. Sci. Technol., A2 1303 (1984); Mat. Lett. (in press).10.1116/1.572399Google Scholar
[11] Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Meth., 174 257 (1980).10.1016/0029-554X(80)90440-1Google Scholar
[12] Thompson, D.A., Rad. Effects, 56 105 (1981).10.1080/00337578108229885Google Scholar
[13] Sigmund, P., Appl. Phys. Lett., 14 114 (1969).10.1063/1.1652730CrossRefGoogle Scholar
[14] Winterbon, K.B., Sigmund, D. and Sanders, J.B., Kgl. Danske Vid. Selskab Mat. Fys. Medd., 37 14 (1970).Google Scholar
[15] Matthews, M.D. and Ashby, S.J., Phil. Mag., 27 1313 (1973).10.1080/14786437308226889Google Scholar
[16] Holland, O.W., Fathy, D., Narayan, J. and Oen, O. S, Rad. Effects, in press.Google Scholar