Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T19:01:39.251Z Has data issue: false hasContentIssue false

Crystallization of Amorphous Titanium Oxide Thin Films by Pulsed UV-Laser Irradiation

Published online by Cambridge University Press:  15 February 2011

Yo Ichikawa
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Ltd., Soraku-gun, Kyoto 619-02, Japan, yo@crl.mei.co.jp
Hideaki Ada Chi
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Ltd., Soraku-gun, Kyoto 619-02, Japan, yo@crl.mei.co.jp
Kentaro Setsune
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Ltd., Soraku-gun, Kyoto 619-02, Japan, yo@crl.mei.co.jp
Syun-Ichiro Kawashima
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Ltd., Soraku-gun, Kyoto 619-02, Japan, yo@crl.mei.co.jp
Koichi Kugimiya
Affiliation:
Central Research Laboratories, Matsushita Electric Ind., Co., Ltd., Soraku-gun, Kyoto 619-02, Japan, yo@crl.mei.co.jp
Get access

Abstract

Effects of ultraviolet (UV) laser irradiation on the local crystal structure have been investigated for amorphous Ti-O thin films sputtered on ST-cut quartz substrates. The irradiation was conducted with a pulsed KrF excimer laser of 248nm in wavelength. There were few changes in the optical transmission spectra of the films before and after the irradiation. The crystal structure of the films was characterized by electron diffraction, XPS and EXAFS analyses. The results obtained from these analyses suggest the films gradually crystallize to a TiO2 crystal with the rutile type structure by the increasing of the laser pulses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Esrom, H., Chemical Perspectives of Microelectronic Materials II. edited by Interrante, L. V., Jensen, K. F., Dubois, L. H., and Gross, M. E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991), 457.Google Scholar
2 Desilva, M. J., Pedraza, A. J., and Lowndes, D. H., J. Mater. Res. 9, 1019 (1994).Google Scholar
3 Pedraza, A. J., Park, J. W., Meyer, H. M., and Braski, D. N., J. Mater. Res. 9, 2251 (1994).Google Scholar
4 Ichikawa, Y., Adachi, H., Setsune, K., and Wasa, K., Appl. Surf. Sci. 60/61, 749 (1992).Google Scholar
5 Setsune, K., Yamazaki, O., and Wasa, K., Elect. Lett. 20, 433 (1984).Google Scholar
6 Raevskii, I. P., Rybyanets, A. N., Malitskaya, M. A., Poltavtsev, V. G., and Turik, A. V., Sov. Phys. Tech. Phys. 37, 475 (1992).Google Scholar
7 Komine, K., Araki, N., and Hohkawa, K., Proc. IEEE Ultrasonics Symp. 253 (1993).Google Scholar
8 Sinha, B. K., and Locke, S., Proc. IEEE Trans. Ultrasonics, Ferroelectrics, and Freq. Cont. UFFC-34, 29 (1987).Google Scholar
9 Yamanouchi, K., Satoh, H., Meguro, T., and Wagatsuma, Y., Ferroelectrics, and Freq. Cont. UFFC-42, 392 (1995).Google Scholar
10 Kino, G. S., and Wagers, R. S., J. Appl. Phys. 44, 1480 (1973).Google Scholar