Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-16T02:34:11.105Z Has data issue: false hasContentIssue false

Crystallization, Doping, Orientation and Grain-Size of Microcrystalline Silicon and Germanium

Published online by Cambridge University Press:  21 February 2011

Raphael Tsu
Affiliation:
Instituto de Fisica e Quimica de Sāo Carlos, Universidade de Sāo Paulo, Sāo Carlos
S. P. Brazil
Affiliation:
Energy Conversion-Devices Inc. Troy, MI 48084 U.S.A.
Get access

Abstract

Preparation and characterization of microcrystalline silicon are discussed. In addition to the usual characterization techniques using TEM,X-ray, Auger, etc., Raman scattering and electro-reflectance measurements have been extensively incorporated into routine analyses. In particular, conductivity percolation, detection of trace crystallites in an amorphous matrix, measurements of grain-size, doping as well as preferred orientation are fully discussed. The single most important effect on the properties of microcrystalline Si and Ge is the presence of impurities. Thus better technical performances must be preceded by an improvement in vacuum and purer gases used in deposition systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsude, A., Kumagai, K., and Tanaka, K., J. Appl. Phys., 22, L34,(1983).Google Scholar
2. Shiraki, Y., in “Technological Applications of Tetrahedral Amorphous Solids” US-Japan Joint Seminar, Palo Alto, Ca. 1982.Google Scholar
3. Tsu, R., Izu, M. Ovshinsky, S.R. and Pollak, F.H., Solid State Comm 36,817(1980).Google Scholar
4. Tsu, R., Izu, M., Cannella, V., Ovshinsky, S.R., Jan, G.J. and Pollak, F.H., J. Phys. Soc. Japan, 49,A1249,(1980).Google Scholar
5. Tsu, R., Chao, S.S., Izu, M., Ovshinsky, S.R., Jan, G.J., Pollak, F.H., J de Physique, Colloque C4, 269,(1981).Google Scholar
6. Gonzalez-Hernandez, J. and Tsu, R., Appl. Phys. Lett. 42,90,(1983).CrossRefGoogle Scholar
7. Abeles, B., in “Appl. Solid State Sci.” ed.Wolfe, R.(Acad. N.Y. 1976),Vol.6 Google Scholar
8. Pollak, F.H. and Tsu, R., Proc. SPIE, 452, 26, (1983).Google Scholar
9. Hamasaki, T., Kurate, H., Hirose, M. and Osaka, Y., Appl.Phys. Lett.37,1084, (1980).Google Scholar
10. Tsu, R., Hernandez, J.G., Chao, S.S., Lee, S.C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).Google Scholar
11. Scher, H. and Zallen, R., J. Chem. Phys. 53,3759,(1970).Google Scholar
12. Hernandez, J.G., Martin, D., Chao, S.S. and Tsu, R., Appl. Phys. Lett. 44,672, (1984).Google Scholar
13. Zallen, R., in “Phys. of Amorphous Solids”,(Wiley, N.Y. 1983).Google Scholar
14. Kennedy, E.F., Csepregi, L., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4241,(1977).Google Scholar
15. Burke, J.E. and Turnbull, D., Prog. Metal Phys., 3, 220 (1952).Google Scholar
16. Paesler, M., Sayers, D., Tsu, R. and Hernandez, J. G., Phys. Rev.,B28,4550, (1983).Google Scholar
17. This idea was an outgrowth of a discussion with Prof. Lucovsky, G..Google Scholar
18. Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. A145, 699,(1934).Google Scholar
19. Hernandez, J.G., Martin, D., Chao, S.S., and Tsu, R., Appl. Phys. Lett. 45, 101,(1984).Google Scholar
20. Matsui, M., Shiraki, Y., and Maruyama, E., Appl. Phys. Lett., 53,995,(1982).Google Scholar
21. Chao, S.S., Hernandez, J.G., Martin, D., and Tsu, R., to be published.Google Scholar
22. Tsu, R., Hernandez, J.G., Martin, D. and Chao, S.S., to be published.Google Scholar
23. Herbeke, G., Krausbauer, L., Stiegmeier, E.F.. Widmer, A.E., Kapport, H. F. and Neugebana, G., Appl. Phys. Lett., 42, 249,(1983).CrossRefGoogle Scholar
24. Shevchik, N.J. and Paul, W., J. Noncrystalline Solids, 16, 55, (1974).Google Scholar
25. Zellama, K., Germain, P., Squeland, S. and Bourgoin, J.C., J. Appl. Phys., 50, 6995, (1979).Google Scholar
26. To Harbeke et al (Ref. 23), a Raman linewidth of 20 cm−1 was good quality. Their good single crystalline bulk grown silicon has a Raman linewidth of 18 cm−1, however, most devices grade bulk grown c-Si has a Raman linewidth of 3 cm−1 measured at room temperature.Google Scholar