Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T03:00:50.525Z Has data issue: false hasContentIssue false

Crystallization and Melting in Multilayered Structures

Published online by Cambridge University Press:  25 February 2011

W. Sevenhans
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
H. Vanderstraeten
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
J. P. Locquet
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
Y. Bruynseraede
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
H. Homma
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
Ivan K. Scihuller
Affiliation:
Physics Departement-B019, University of California-San Diego, LaJolla, California 92093, U.S.A.
Get access

Abstract

The stability of Pb/Ge and Pb/C multilayers has been studied over a broad temperature range by x-ray diffraction experiments. In the Pb/Ge system an amorphous to microcrystalline phase transformation of the Ge-layers was already observed at ≃ 100 °C. This transition destroys the modulation structure and improves the Pb(111) texture. In the Pb/C multilayers, the layered structure was still present at temperatures higher than the melting temperature of Pb. Contrary to recent publications, no depression of the melting temperature of the two-dimensional Pb layers could be observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a recent review see Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985)Google Scholar
[2]Allenda, D., Bray, J. and Bardeen, J., Phys. Rev. B 7, 1020 (1973)Google Scholar
[3]Kosterlitz, J.M. and Thouless, D.J., J. Phys. C 6, 118 (1973), J. Phys. C 7, 1046 (1974)Google Scholar
[4]Willens, R.H., Kornblit, A., Testardi, L.R. and Nakahara, S., Phys. Rev. B 25, 290 (1982)Google Scholar
[5]Devaud, G. and Willens, R.H., Phys. Rev. Lett. 57, 2683 (1986)Google Scholar
[6]Frenken, J.W.M. and van der Veen, J.F., Phys. Rev. Lett. 54, 134 (1985)Google Scholar
[7]Oki, T., Ogawa, Y. and Tujiki, Y., Japan. J. Appl. Phys. 8,1056 (1969)Google Scholar
[8]Herd, S.R., Chaudhari, P. and Brodsky, M.H., J. Non Cryst. Solids 7, 309 (1972)Google Scholar
[9]Frenken, J.W.M., Marée, P.M.J. and van der Veen, J.F., Phys. Rev. B 3, 7506 (1986)Google Scholar
[10]van der Veen, J.F., Proc. of the 18th CMD of the EPS, Pisa (1987)Google Scholar
[11]Sevenhans, W., Locquet, J.P. and Bruynseraede, Y., Rev. Sci. Instrum. 57, 937 (1986)Google Scholar
[12]Sevenhans, W., Gijs, M., Bruynseraede, Y., Homma, H. and Schuller, I.K., Phys. Rev. B 34, 5955 (1986)Google Scholar
[13]Homma, H., Schuller, I.K., Sevenhans, W. and Bruynseraede, Y., Appl. Phys. Lett. 50, 594 (1987)Google Scholar
[14]Sevenhans, W., Locquet, J.P., Bruynseraede, Y., Homma, H. and Schuller, I.K., to be publishedGoogle Scholar
[15]Hansen, M., Constitution of Binary Alloys, (McGraw-Hill, New York, 1958) and supplementsGoogle Scholar