Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-28T16:48:54.171Z Has data issue: false hasContentIssue false

The Crystal Structure of Ianthinite, a Mixed-Valence Uranium Oxide Hydrate

Published online by Cambridge University Press:  03 September 2012

Peter C. Burns
Affiliation:
Department of Geology, University of Illinois at Urbana-Champaign, 245 Natural History Building, 1301 West Greet Street, Urbana, IL 61801, U.S.A.
Robert J. Finck
Affiliation:
Argonne National Laboratory, Chemical Technology Division, 9700 South Cass Avenue, Argonne, IL 60439–4837, U.S.A.
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
Mark L. Miller
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131–1116, U.S.A.
Rodney C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131–1116, U.S.A.
Get access

Abstract

Ianthinite, [U4+2(UO2)4O6(OH)4(H2O)4](H2O)5, is the only known uranyl oxide hydrate mineral that contains U4+, and it has been proposed that ianthinite may be an important Pu4+ -bearing phase during the oxidative dissolution of spent nuclear fuel. The crystal structure of ianthinite, orthorhombic, a 7.178(2), b 11.473(2), c. 30.39(1) Å, V 2502.7 Å3, Z = 4, space group P21cn, has been solved by direct methods and refined by least-squares methods to an R index of 9.7 % and a wR index of 12.6 % using 888 unique observed [ | F | ≥ 5σ | F | ] reflections. The structure contains both U6+ and U4+. The U6+ cations are present as roughly linear (U6+O2)2+ uranyl ions (Ur) that are in turn coordinated by five O2-and OH located at the equatorial positions of pentagonal bipyramids. The U4+ cations are coordinated by O2-, OH and H2O in a distorted octahedral arrangement. The Urφ5 and U4+φ6 (φ: O2-, OH, H2O) polyhedra link by sharing edges to form two symmetrically distinct sheets at z z ≈ 0.0 and z ≈ 0.25 that are parallel to (001). The sheets have the β-U3O8 sheet anion-topology. There are five symmetrically distinct H2O groups located at z ≈ 0.125 between the sheets of Uφn polyhedra, and the sheets of Uφn polyhedra are linked together only by hydrogen bonding to the intersheet H2O groups. The crystal-chemical requirements of U4+ and Pu4+ are very similar, indicating that extensive Pu4+ ↔ U4+ substitution can occur within the sheets of Uφn polyhedra in the structure of ianthinite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pearcy, E.C., Prikryl, J.D., Murphy, W.M. and Leslie, B.W., Appl. Geochem. 9 (1994) 713.Google Scholar
[2] Deliens, M., Piret, P., and Comblain, G., Les Minéraux Secondaires d'Uranium du Zaïre (Musée Royal de l'Afrique Centrale, Tervuren, Belgium, 1981) 99 pp.Google Scholar
[3] Deliens, M., Bull. Soc. Franc. Minéral. Cristallogr. 100 (1977) 32.Google Scholar
[4] Guillemin, C. and Protas, J., Bull. Soc. Franc. Minéral. Cristallogr. 82 (1959) 80.10.3406/bulmi.1959.5308Google Scholar
[5] Frondel, C., Systematic Mineralogy of Uranium and Thorium. U.S. Geological Society Bulletin 1064 (1958) 400 pp.Google Scholar
[6] Bignand, C., Bull. Soc. Franc. Mineral. Cristallogr. 78 (1955) 1.Google Scholar
[7] Finch, R.J. and Ewing, R.C., Alteration of uraninite in an oxidizing environment and its relevance to the disposal of spent nuclear fuel. SKB Technical Report 91–15 (1991) (SKB, Stockholm).Google Scholar
[8] Finch, R.J. and Ewing, R.C., J. Nucl. Mater. 190 (1992) 133.10.1016/0022-3115(92)90083-WGoogle Scholar
[9] Johnson, L.H. and Werme, L.O., Mater. Res. Soc. Bull. XIX(12) (1994) 24.Google Scholar
[10] Forsyth, R.S. and Werme, L.O., J. Nucl. Mater. 190 (1992) 3.10.1016/0022-3115(92)90071-RGoogle Scholar
[11] Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. and Tani, B.S., J. Nucl. Mater. 190 (1992) 107.10.1016/0022-3115(92)90081-UGoogle Scholar
[12] Stroes-Gascoyne, S., Johnson, L.J., Beeley, P.A., and Sellinger, D.M., In: Scientific Basis for Nuclear Waste Management IX (Werme, L.O., ed), Materials Research Society Proceedings Volume 50 (Materials Research Society, Pittsburgh, 1985) 317.Google Scholar
[13] Wang, R. and Katayama, J.B., Nucl. Chem. Waste Management 3 (1982) 83.Google Scholar
[14] Wadsten, T., J. Nucl. Mater. 64 (1977) 315.10.1016/0022-3115(77)90086-1Google Scholar
[15] Ewing, R.C., In: Scientific Basis for Nuclear Waste Management XVI (Interante, C.G. & Pabalan, R.T., eds). Materials Research Society Proceedings, Volume 294 (Materials Research Society, Pittsburgh, 1993) 559.Google Scholar
[16] Bruno, J., Casas, I., Cera, E., Ewing, R.C., Finch, R.J. and Werme, W.O., In: Scientific Basis for Nuclear Waste Management XVIII (Murakami, T. & Ewing, R.C., eds). Materials Research Society Proceedings, Volume 353 (Materials Research Society, Pittsburgh, 1995) 633.Google Scholar
[17] Finch, R. J. and Ewing, R.C., In: Scientific Basis for Nuclear Waste Management XVI (edited by Barkatt, A. and von Konynenburg, R.A.,), Materials Research Society Proceedings Volume 333 (Materials Research Society, Pittsburgh, 1994) 625.Google Scholar
[18] Cordfunke, E.H.P., Prins, G. and van Vlaanderen, P., J. Inorg. Nucl. Chem. 30 (1968) 1745.10.1016/0022-1902(68)80348-3Google Scholar
[19] Taylor, P., Lemire, R.J. and Wood, D.D., In: Proceedings of the Third International Conference on High-Level Radioactive Waste Management, Las Vegas, Nevada (American Nuclear Society, La Grange, IL, and American Society of Civil Engineers, New York, 1992) 1442.Google Scholar
[20] Taylor, P., Wood, D.D., Owen, D. G. and Park, G.-I., J. Nucl. Mater. 183 (1991) 105.Google Scholar
[21] Frondel, J.W. and Cuttita, F., Am. Mineral. 39 (1953) 1018.Google Scholar
[22] Schoep, A. and Stradiot, S., Am. Mineral. 32 (1947) 344.Google Scholar
]23[ Cromer, D.T. and Mann, J.B., Acta Crystallogr., A24 (1968) 321.10.1107/S0567739468000550Google Scholar
[24] Cromer, D.T. and Liberman, D., J. Chem. Phys. 53 (1970) 1891.10.1063/1.1674266Google Scholar
[25] Evans, H.T. Jr., Science, 141 (1963) 154.10.1126/science.141.3576.154Google Scholar
[26] Shannon, R.D., Acta Crystallogr. A32 (1976) 751.10.1107/S0567739476001551Google Scholar
[27] Brese, N.E. and O'Keeffe, M., Acta Crystallogr. B47 (1991) 192.Google Scholar
[28] In prep.Google Scholar
[29] Burns, P.C., Miller, M.L. and Ewing, R.C., Can. Mineral. 34 (1996) 845.Google Scholar
[30] Loopstra, B.O., Acta Crystallogr. B26 (1970) 656.10.1107/S0567740870002935Google Scholar
[31] Pagoaga, M.K., Appleman, D.E. and Stewart, J.M., Am. Mineral. 72 (1987) 1230.Google Scholar
[32] Finch, R.J., Cooper, M.A., Hawthorne, F.C. and Ewing, R.C., Can. Mineral. 34 (1996) (in press)Google Scholar
[33] Piret, P., Bull. Mineral. 108 (1985) 659.Google Scholar
[34] Burns, P.C., Ewing, R.C. and Miller, M.L., J. Nucl. Mater. (1996) (accepted).Google Scholar
[35] Christoph, G.G., Larson, A.C., Eller, P.G., Purson, I.D., Zahrt, J.D., Penneman, R.A. and Rinehart, G.H., Acta Crystallogr. B44 (1988) 575 10.1107/S0108768188008316Google Scholar