Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T15:19:53.675Z Has data issue: false hasContentIssue false

Crystal Plasticity Analysis of Thermal Deformation and Dislocation Accumulation in Gaas/Si Patterned Structure

Published online by Cambridge University Press:  26 February 2011

Tetsuya Ohashi
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd. 4026, Kuji, Hitachi, 319-12, Japan
Naoyuki Honda
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd. 4026, Kuji, Hitachi, 319-12, Japan
Get access

Abstract

Plastic slip deformation in patterned.GaAs films on Si substrate during cooling from film deposition temperature are numerically simulated under a continuum mechanics approximation. The plastic slip is assumed to take place on (111) <110> slip systems and activation condition of the slip systems is given by the Schmid's law. The critical resolved shear stresses for the activation of slip systems are expressed as a function of accumulated dislocation densities, which are evaluated by models for their movement and interaction. A three dimensional finite element computer program is developed, in which strain hardening behaviour is given a quantitative expression by the models for dislocations. Results of the simulation reveal process of plastic slip and dislocation accumulation in GaAs film. Residual stress evaluated by the simulation agreed well with results obtained by photo-luminescent experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shimizu, H., Itou, K., Wada, M., Sugino, T. and Teramoto, I., IEEE J. Quant. Elec. Qe-17, 763(1981).Google Scholar
2 Enatsu, M., Shimizu, M., Mizuki, T., Sugawara, K. and Sakurai, T., Jpn. J. Appl. Phys., 26, L1468(1987).Google Scholar
3 Feng, Z. and Liu, H., J. Appl. Phys., 54, 83(1983).Google Scholar
4 Sugo, M., Uchida, N., Yamamoto, A., Nishioka, T. and Yamaguchi, M.,J. Appl. Phys., 65, 591(1989).Google Scholar
5 Olsen, G. H. and Ettenberg, M., J. Appl. Phys., 48,254(1977).Google Scholar
6 Sakai, S.. Kawasaki, K. and Wada, N., Jpn. J. Appl. Phys. 29, L853(1990).Google Scholar
7 Lee, H. P., Huang, Y., Liu, X., Lin, H. and Smith, J. S., Mat. Res. Soc. Symp. Proc., 116, 219(1988).Google Scholar
8 Jordan, A. S., Caruso, R. and Neida, A. R. Von, The Bell System Technical Journal, 59, 593(1980).Google Scholar
9 Hill, R., J. Mech. Phys. Sol., 14, 95(1966).Google Scholar
10 Ohashi, T., Trans. Japan Inst. Met., 28,906(1987).Google Scholar
11 Franciosi, P., Berveiller, M. and Zaoui, A., Acta Met., 28,273(1980).Google Scholar
12 Tamamushi, B.et al ed., Encyclopedia for physics and chemistry, 3rd ed., p1068,1151,(1981), lwanami pub. Tokyo, (in Japanese).Google Scholar
13 Tokyo Astronomical Observatory ed., Chronological Scientific Tables, p471, (1988), Maruzen pub., Tokyo, (in Japanese).Google Scholar
14 Semiconductors Handbook Compilation Comittee ed., Semiconductors Hadbook, revised edition, p135, (1977), Ohm-sha pub. Tokyo, (in Japanese).Google Scholar
15 Hirth, J.P. and Lothe, J., Theory of dislocations, 2nd ed. p35, (1982), John-Wiley & Sons, New York.Google Scholar
16 Swaninathan, V. and Copley, S.M., J. Amer. Ceram. Soc., 58,482(1975).Google Scholar
17 Yonenaga, I., Onose, U. and Sumino, K., J. Mater. Res. 2, 252(1987).Google Scholar
18 Tachikawa, M. and Mori, H., Appl. Phys. Lett., 56, 2225(1990).Google Scholar
19 Honda, N. and Ohashi, T., Hitachi Research Lab. Internal report. No.31394 (1991).Google Scholar
20 Sohn, H., Weber, E. R., Tu, J., Lee, H. P. and Wang, S., Mat. Res. Soc. Symp. Proc. 198,45(1990).Google Scholar
21 Tsukamoto, N., Yazawa, Y., Asano, J. and Minemura, T., Hitachi Research Lab. Internal report No.31329(1990).Google Scholar