Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T06:10:57.708Z Has data issue: false hasContentIssue false

The Critical Stress for Transmission of a Dislocation Across an Interface: Results From Peierls and Embedded Atom Models

Published online by Cambridge University Press:  10 February 2011

P. M. Anderson
Affiliation:
Dept. MSE, The Ohio State University, 2041 College Rd., Columbus, OH 43210–1179, anderson.1@osu.edu
S. Rao
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432.
Y. Cheng
Affiliation:
Dept. MSE, The Ohio State University, 2041 College Rd., Columbus, OH 43210–1179
P. M. Hazzledine
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432.
Get access

Abstract

A continuum Peierls model of a screw dislocation being pushed through an interface and an atomistic EAM study of dislocation transmission across a [0 0 1] Al-Ni interface suggest that core spreading into the interface and misfit dislocations in the interface are both potent effects that can significantly increase barrier strength of interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hall, E.O., Proc. Roy. Soc. B 64, p. 747 (1951)Google Scholar
2. Petch, N.J., J. Iron Steel Inst. 174, p. 25 (1953).Google Scholar
3. Clemens, B.M., King, H., Barnett, S.A., MRS Bulletin 24(2), p. 20 (1999).Google Scholar
4. Rao, S.I., Hazzledine, P.M., Dimiduk, D.M., Mater. Res. Soc. Proc. 362, p. 67 (1995).Google Scholar
5. Hazzledine, P.M. and Rao, S.I., Mater. Res. Soc. Proc. 434, p. 135 (1996).Google Scholar
6. Saada, G., in Electron Microscopy and Strength of Crystals, edited by Thomas, G. and Washburn, J. (Interscience, New York) p. 651 (1963).Google Scholar
7. Head, A.K., Philos. Mag. 44, p. 92 (1953).Google Scholar
8. Head, A.K., Proc. Phys. Soc. (London) B 66, p. 793 (1953).Google Scholar
9. Dundurs, J., in Math. Theory of Dislocations, edited by Mura, T. (ASME, NY) p. 70 (1969).Google Scholar
10. Hurtado, J.A. and Freund, L.B., J. Elasticity 52(2), p. 167 (1998).Google Scholar
11. Shilkrot, L.E. and Srolovitz, D.J., Acta Mater. 46(9), p. 3063 (1998).Google Scholar
12. Pacheco, E.S. and Mura, T., J. Mech. Phys. Solids 17, p. 163 (1969).Google Scholar
13. Hirth, J.P. and Lothe, J., Theory of Dislocations, Wiley, NY, 1982, p. 837.Google Scholar
14. Xin, X. and Anderson, P.M., to be published in Multiscale Fracture and Deformation in Materials and Structures: James R. Rice 60th Anniversary Volume, edited by Chuang, T.-J. and Rudnicki, J. W. (Kluwer, Dordrecht).Google Scholar
15. Krzanowski, J.E., Scripta Metall. Mater. 25(6), p. 1465 (1991).Google Scholar
16. Rice, J.R., J. Mech. Phys. Solids 40, p. 235 (1992).Google Scholar
17. Parthasarathy, T.A., Rao, S.I., and Dimiduk, D., Philos. Mag. A 67, p. 643 (1993).Google Scholar
18. Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, p. 6443 (1984).Google Scholar
19. Finnis, M.W. and Sinclair, J.E., Philos. Mag. A 50, p. 45 (1984).Google Scholar
20. Voter, A.F. and Chen, S.P., Mater. Res. Soc. Proc. 82, p. 175 (1987).Google Scholar
21. Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B. 29, p. 2963 (1984).Google Scholar
22. Rao, S.I., Hernandez, C., Simmons, J.P., Parthasarathy, T.A., Woodward, C., Philos. Mag. A 77(1), p. 231 (1998).Google Scholar
23. Vitek, V., Crystal Lattice Defects 5, p. 1 (1974).Google Scholar
24. Stroh, A.N., Philos. Mag. 3, p. 625 (1958).Google Scholar
25. Rao, S.I. and Hazzledine, P.M., accepted for publication in Philos. Mag. A (1999).Google Scholar