Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-rbzxz Total loading time: 0.288 Render date: 2022-05-17T13:16:48.951Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Critical Evaluation of Atomistic Simulations of 3D Dislocation Configurations

Published online by Cambridge University Press:  10 February 2011

Vijay B. Shenoy
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Rob Phillips
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Get access

Abstract

Though atomistic simulation of 3D dislocation configurations is an important objective for the analysis of problems ranging from point defect condensation to the operation of Frank-Read sources such calculations pose new challenges. In particular, use of finite sized simulation cells produce additional stresses due to the presence of fixed boundaries in the far field which can contaminate the interpretation of these simulations. This paper discusses an approximate scheme for accounting for such boundary stresses, and is illustrated via consideration of the lattice resistance encountered by straight dislocations and simulations of 3D bow out of pinned dislocation segments. These results allow for a reevaluation of the concepts of the Peierls stress and the line tension from the atomistic perspective.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kocks, U. F., Argon, A. S., Ashby, M. F., Progress in Material Science, 19, (1975).Google Scholar
[2] Basinski, Z. S., Duesbery, M. S., Taylor, R., Can. J. Phys., 49, p. 2160, (1971).CrossRefGoogle Scholar
[3] Shenoy, V. B., Phillips, R., Manuscript under preparation.Google Scholar
[4] Daw, M. S., Baskes, M. I., Phys. Rev. Lett., 50, p. 1285, (1983).CrossRefGoogle Scholar
[5] Ercolessi, F., Adams, J., Europhys. Lett., 26, p. 583, (1993).CrossRefGoogle Scholar
[6] Foreman, A. J. E., Phil. Mag., 15, p. 1011, (1967).CrossRefGoogle Scholar
[7] Brown, L. M., Phil. Mag., 10, p. 441, (1964).CrossRefGoogle Scholar
[8] Nabarro, F. R. N., Theory of Crystal Dislocations, Oxford University Press, (1967).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Critical Evaluation of Atomistic Simulations of 3D Dislocation Configurations
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Critical Evaluation of Atomistic Simulations of 3D Dislocation Configurations
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Critical Evaluation of Atomistic Simulations of 3D Dislocation Configurations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *