Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-db5sh Total loading time: 0.224 Render date: 2021-06-13T03:42:16.391Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy

Published online by Cambridge University Press:  26 February 2011

Sharvan Kumar
Affiliation:
Sharvan_Kumar@brown.edu, Brown University, Engineering, 182 Hope Street, Box D, Providence, RI, 02912, United States, (401) 863 2862, (401) 863 7677
Amruthavalli Pallavi Alur
Affiliation:
amruthavalli.p.alur@intel.com, Intel Corporation, 5000 W. Chandler Blvd, CH5-159 (M/S), Chandler, AZ, 85226, United States
Corresponding
Get access

Abstract

Mo-rich Mo-Si-B multiphase alloys are currently being explored for their potential as high-temperature structural materials for components in hot sections in aircraft engines. In this paper, we present crack growth behavior in one such two-phase alloy consisting of a Mo solid solution matrix in which is dispersed approximately 40 volume percent of the Mo5SiB2 (T2) phase. Crack growth under monotonic and cyclic loading is considered over a temperature range spanning 20°C to 1400°C. The effects of loading rate (in monotonic loading) and dwell times at maximum stress (in cyclic loading) at high temperatures on crack growth were examined to understand the contribution from creep. Results confirm a gradual increase in fracture toughness upto 1000°C, beyond which the increase is more substantial with temperature; fatigue susceptibility was also observed in excess of 900°C and crack-tip-stresses-driven microstructural instability is evident at 1400°C. At this temperature, slow loading rates or dwell times at maximum stress lead to crack-tip recrystallization and creep cavitation that together degrade the material's properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bewlay, B. P., Jackson, M. R., Zhao, J._C., Subramanian, P. R., Mendiratta, M. G. and Lewandowski, J. J., MRS Bulletin, 28, 646 (2003).CrossRefGoogle Scholar
2. Dimiduk, D. M. and Perepezko, J. H., MRS Bulletin, 28, 639 (2003).CrossRefGoogle Scholar
3. Perepezko, J. H., Sakidja, R. and Kumar, K. S., “Mo-Si-B Alloys for Ultra-High Temperature Applications”, in Advanced Structural Materials: Properties, Design, Optimization and Applications, Marcel Dekker, Inc.– in press, November 2006.CrossRefGoogle Scholar
4. Nunes, C. A., Sakidja, R. and Perepezko, J. H., in Structural Intermetallics (1997), Editors; Nathal, M. V. et al., TMS, Warrendale, PA. (1997), p. 831.Google Scholar
5. Sakidja, R., Wilde, G., Sieber, H. and Perepezko, J. H., in High-Temperature Ordered Intermetallic Alloys VIII, Vol. 552, editors, George, E. P., Mills, M. J. and M., Yamaguchi, Materials Research Society, Warrendale, PA, (1999), p. KK6.3.1.Google Scholar
6. Perepezko, J. H., Sakidja, R. and Kim, S., in High Temperature Ordered Intermetallic Alloys IX, Vol. 646, editors, Schneibel, J. H. et al., Materials Research Society, Pittsburgh, PA, (2001), p. N4.5.Google Scholar
7. Perepezko, J. H., Sakidja, R., Kim, S., Dong, Z. and Park, J. S., in Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, The Materials Society, Warrendale, PA, (2001), p.505.Google Scholar
8. Sakidja, R. and Perepezko, J. H., Metall. Mater. Trans., 36A, 507 (2005).CrossRefGoogle Scholar
9. Sakidja, R., Kim, S., Park, J. S., and Perepezko, J. H., in Defect Properties and Related Phenomena in Intermetallic Alloys, Vol. 753, editors, George, E. P., Inui, H., Mills, M. J. and Eggler, G., Materials Research Society, Warrendale, PA, (2003, BB2.3.Google Scholar
10. Parthasarathy, T. A., Mendiratta, M. G. and Dimiduk, D. M., Acta Mater., 50, 1857 (2002).CrossRefGoogle Scholar
11. Mandal, P., Thom, A. J., Behrani, V., Kramer, M. J., and Akinc, M., Mater. Sci Eng., A371, 335 (2004).CrossRefGoogle Scholar
12. Meyer, M. K., Thom, A. J. and Akinc, M., Intermetallics, 7, 153 (1999).CrossRefGoogle Scholar
13. Thom, A. J., Summers, E. and Akinc, M., Intermetallics, 10, 555 (2002).CrossRefGoogle Scholar
14. Behrani, V., Thom, A., Kramer, M. and Akinc, M., Metall. Mater. Trans., 36A, 609 (2005).CrossRefGoogle Scholar
15. Ito, K., Hayashi, T., Yokobayashi, M., Murakami, T. and Numakura, H., Metall. Mater. Trans., 36A, 627 (2005).CrossRefGoogle Scholar
16. Jéhanno, P., Heilmaier, M., Kestler, H., Böning, M., Venskutonis, A., Bewlay, B., and Jackson, M., Metall. Mater. Trans., 36A, 515 (2005).CrossRefGoogle Scholar
17. Schneibel, J. H., Ritchie, R. O., Kruzic, J. J. and Tortorelli, P. F., Metall. Mater. Trans., 36A, 525 (2005).CrossRefGoogle Scholar
18. Ito, K., Ihara, K., Tanaka, K., Fujikura, M. and Yamaguchi, M., Intermetallics, 9, 591 (2001).CrossRefGoogle Scholar
19. Meyers, M. K., Kramer, M. J. and Akinc, M., Intermetallics, 4, 273 (1996).CrossRefGoogle Scholar
20. Mason, D. P. and Aken, D. C. Van, Acta Metall. Mater., 43, 1201 (1995).CrossRefGoogle Scholar
21. Yoshimi, K., Yoo, M. H., Wereszczak, A. A., Borowicz, S. M., George, E. P. and Zee, R. H., Scripta Mater., 45, 1321 (2001).CrossRefGoogle Scholar
22. Rosales, I. and Schneibel, J. H., Intermetallics, 8, 885 (2000).CrossRefGoogle Scholar
23. Alur, A. P., Chollacoop, N. and Kumar, K. S., Acta Materialia, 52, 5571 (2004).CrossRefGoogle Scholar
24. Yoshimi, K., Nakatani, S., Nomura, N. and Hanada, S., Intermetallics, 11, 787 (2003).CrossRefGoogle Scholar
25. Schneibel, J. H., Kramer, M. J., Unal, O. and Wright, R. N., Intermetallics, 9, 25 (2001).CrossRefGoogle Scholar
26. Schneibel, J. H., Easton, D. S., Choe, E. and Ritchie, R. O., in Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, The Materials Society, Warrendale, PA, (2001), p. 801.Google Scholar
27. Schneibel, J. H., Liu, C. T., Heatherly, L. and Kramer, M. J., Scripta Mater., 7, 1169 (1998).CrossRefGoogle Scholar
28. Schneibel, J. H., Intermetallics, 11, 625 (2003).CrossRefGoogle Scholar
29. Nieh, T. G., Wang, J. G. and Liu, C. T., Intermetallics, 9, 73 (2001).CrossRefGoogle Scholar
30. Choe, H., Chen, D., Schneibel, J.H. and Ritchie, R.O., Intermetallics, 9, 319 (2001).CrossRefGoogle Scholar
31. Choe, H., Schneibel, J. H. and Ritchie, R. O., Metall. Mater. Trans., 34A, 225 (2003).CrossRefGoogle Scholar
32. Kruzic, J. J., Schneibel, J. H. and Ritchie, R.O., Scripta Mater., 50, 459 (2004).CrossRefGoogle Scholar
33. Challenger, K. D. and Vining, P. G., Journal of Eng. Mat. Techn., 105, 280 (1983).CrossRefGoogle Scholar
34. Sadananda, K. and Shahinian, P., Met. Trans. A, 11A, 267(1980).CrossRefGoogle Scholar
35. Sadananda, K. and Shahinian, P., Engineering Fracture Mechanics, 11, 73 (1979).CrossRefGoogle Scholar
36. Chen, S.-F. and Wei, R. P., Mater. Sci. Eng., A256, 197 (1998).CrossRefGoogle Scholar
37. Alur, A. P., Chollacoop, N. and Kumar, K. S., Acta Mater., (2006) – in press.Google Scholar
38. Alur, A. P. and Kumar, K. S., Acta Mater., 54, 385 (2006).CrossRefGoogle Scholar
39. Jain, P. and Kumar, K. S., MRS Fall Meeting (2006) – this proceedings.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *