Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T20:32:08.812Z Has data issue: false hasContentIssue false

Correlation Between Structural and Photo Electrical Properties of a-Si1−xGex:H Alloy Films - New Interpretation Concerning the Preferential Attachment of Hydrogen

Published online by Cambridge University Press:  21 February 2011

B. Schroeder
Affiliation:
Fachbereich Physik, Universitat Kaiserslautern, Postfach 3049, D—6750 Kaiserslautern, Fed. Rep. of, Germany
M. Leidner
Affiliation:
Fachbereich Physik, Universitat Kaiserslautern, Postfach 3049, D—6750 Kaiserslautern, Fed. Rep. of, Germany
H. Oechsner
Affiliation:
Fachbereich Physik, Universitat Kaiserslautern, Postfach 3049, D—6750 Kaiserslautern, Fed. Rep. of, Germany
Get access

Abstract

a—Si1−xGex:H alloy films with 0 > × > 1 have been prepared by reactive co— sputtering (rf—magnetron) from separate targets. The preparation conditions which have been optimized for each composition x must be changed from a—Si:H—like (0 > × > 0.4) to a—Ge:H—like (× < 0.7) to obtain the best photoelectrical quality of the alloy material. The preferential attachment of hydrogen was quantitatively investigated by detailed ir—spectrometric studies. Its monotonic change with x is attributed to fundamental preferential attachment of hydrogen to silicon superimposed by a further preferential attachment to the respective minority alloy partner. The preferential attachment of hydrogen essentially influences the microstructure of the film and thus the material properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paul, W., Paul, D.K., Roedern, B. v., Blake, J., Oguz, S.: Phys. Rev. Lett. 46, 1016 (1987)Google Scholar
2. Mackenzie, K.O.. Eggert, J.R., Leopold, D., Li, Y.M., Lin, S., and Paul, W.: Phys. Rev. B 31, 2198 (1985)Google Scholar
3. Rudder, R.A., Cook, J.W., and Lucovsky, G.: Appl. Phys. Lett. 43, 871 (1983)CrossRefGoogle Scholar
4. Rudder, R.A., Cook, J.W., and Lucovsky, G.: J. Vac. Sci. Techn. A3, 567 (1985)Google Scholar
5. Luft, W.: Proc. 20th IEEE Photovoltaic Specialists Conference Vol. 1, p. 218 (1988)Google Scholar
6. Karg, F.H., Bohm, H., and Pierz, K.: J. Non—Cryst. Solids 114, 477 (1989)Google Scholar
7. Martin, D., Schroder, B., Leidner, M., and Oechsner, H.: J. Non—Cryst. Solids 114, 537 (1989)Google Scholar
8. Oechsner, H.: Nucl. Instr. & Meth. Phys. Res. B33, 918 (1988)Google Scholar
9. Stutzmann, M., Street, R.A., Tsai, C.C., Boyce, J.B., and Ready, S.E. J. Appl. Phys. 66, 569 (1989)Google Scholar
10. Wakagi, M., Chigasaki, M., Tamahshi, K., Ohno, T., Naruse, M., Hanozono, M., and Maruyama, E.: J. Non—Cryst. Solids 77/78, 889 (1985)Google Scholar
11. Wagner, H. and Beyer, W.: Solid State Commun. 48, 585 (1983)Google Scholar
12. Mahan, A.H., Raboisson, P., and Tsu, R.: Appl. Phys. Lett. 50, 335 (1987)Google Scholar