Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T18:41:51.408Z Has data issue: false hasContentIssue false

Concentration and Defect Dependent Ferromagnetism above Room Temperature in Co Doped ZnO Films Prepared by Metalorganic Decomposition

Published online by Cambridge University Press:  01 February 2011

P. Kharel
Affiliation:
ar2275@wayne.edu
C. Sudakar
Affiliation:
csudakar@gmail.com
G. Lawes
Affiliation:
av4599@wayne.edu
R. Suryanarayanan
Affiliation:
sury39@yahoo.com
R. Naik
Affiliation:
rnaik@wayne.edu
V. M. Naik
Affiliation:
vmnaik@umich.edu, University of Michigan-Dearborn, Department of Natural Sciences, United States
Get access

Abstract

Zn1−xCoxO (x = 0.0 – 0.047) thin films (thickness ∼0.5 – 1 μm) have been prepared on sapphire substrates using metalorganic decomposition (MOD) method. The X-ray diffraction and Raman scattering studies indicate films to be polycrystalline ZnO with wurtzite structure. The optical absorption spectra show an expected bandgap of ∼3.2 eV. The magnetization studies show that the as prepared films lack the room temperature ferromagnetic order, whereas the films when vacuum annealed at a temperature 500 – 600 °C acquire ferromagnetic ordering at room temperature. Further, the observed ferromagnetism (FM) appears only for a limited range of Co concentration, 0.03 < x < 0.10 (after heat treating in vacuum at 550 °C), and it reversibly disappears upon re-annealing in air. The data presented here seem to suggest that the appearance of ferromagnetic order is dictated by both the oxygen defects and the critical concentration of Co, and thus may lend support to a recent model proposed by Coey et al. [Nature Materials4, 173 (2005)].

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., and Norton, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J., and Boatner, L.A., J. Appl. Phys. 93, 1 (2003).10.1063/1.1517164Google Scholar
2. Sato, K. and Yoshida, H. K., Jpn. J. Appl. Phys., Part 2 40, L334 (2001).10.1143/JJAP.40.L334Google Scholar
3. Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S. and Iye, Y., Appl. Phys. Lett. 69 363 (1996).10.1063/1.118061Google Scholar
4. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).10.1126/science.287.5455.1019Google Scholar
5. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S. Y. and Koinuma, H., Science 291, 854 (2001).10.1126/science.1056186Google Scholar
6. Wang, Z., Tang, J., Tung, L., Zhou, W. and Spinu, L., J. Appl. Phys. 93 7870 (2003).10.1063/1.1556122Google Scholar
7. Hong, N.H., Sakai, J. and Prellier, W., J. Magn. Magn. Mater. 281, 347 (2004).10.1016/j.jmmm.2004.04.125Google Scholar
8. Ueda, K., Tabata, H. and Kawai, T., Appl. Phys. Lett. 79 988 (2001).10.1063/1.1384478Google Scholar
9. Fukuma, T., Jin, Z., Kawasaki, M., Shono, T., Hasegawa, T., Koshihara, S. and Koinuma, H. Appl. Phys. Lett. 78, 958 (2001).10.1063/1.1348323Google Scholar
10. Hori, H., Sonada, S., Sasaki, T., Yamamoto, Y., Shimizu, S., Suga, K. and Kindo, K. Physica B 324, 142 (2002).10.1016/S0921-4526(02)01288-7Google Scholar
11. Wu, S.Y., Liu, H.X., Singh, R.K., Budd, L., van Schilfgarde, M., McCarthy, M.R., Smith, D.J. and Newman, N., Appl. Phys. Lett. 82, 3047 (2003).10.1063/1.1570521Google Scholar
12. Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, C.J.R., Browning, N.D., Sarma, S.D., Drew, H.D., Greene, R.L. and Venkatesan, T., Phys. Rev. Lett. 91, 077205 (2003).10.1103/PhysRevLett.91.077205Google Scholar
13. Coey, J.M.D., Douvalis, A.P., Fitzerald, C.B. and Venkatesan, M., Appl. Phys. Lett. 84, 1332 (2004).10.1063/1.1650041Google Scholar
14. Chambers, S.A., Thevuthasan, S., Farrow, R.F.C., Marks, R.F., Thiele, J.U., Folks, L., Samant, M.G., Kellock, A.J., Ruzycki, N., Ederer, D.L. and Diebold, U. Appl. Phys. Lett. 79, 3467 (2001).10.1063/1.1420434Google Scholar
15. Wan, K.P., Ortega-Hertogs, R.J., Moodera, J., Punnoose, S.A. and Seehra, M.S., J. Appl. Phys. 91, 8093 (2002).Google Scholar
16. Shutthanandan, V., Thevudasan, S., Heald, S. M., Droublay, T., Englehard, M.H., Kasper, T.C., McCready, D.E., Saraf, L., Chambers, S.A., Mun, B.S., Hamdan, N.M., Nachimuthu, P., Taylor, B., Sears, R.P. and Sinkovic, B., Appl. Phys. Lett. 84, 4466 (2004).10.1063/1.1753652Google Scholar
17. Murakami, M., Matsumoto, Y., Hasegawa, T., Ahmet, P., Nakajima, K., Chikyow, T., Ofuchi, H., Nakai, I. and Koinuma, H., J. Appl. Phys. 95, 5330 (2004).10.1063/1.1695598Google Scholar
18. Kane, M.H., Shalini, K., Summers, C.J., Varatharajan, R., Nause, J., Vestal, C.R., Zhang, Z.J., and Ferguson, I. T., J. Appl. Phys. 97, 023906 (2005).10.1063/1.1830084Google Scholar
19. Ando, K., Saito, H., Jin, Z., Fukumura, T., Kawasaki, M., Matsumoto, Y. and Koinuma, H., J. Appl. Phys. 89, 7284 (2001).10.1063/1.1356035Google Scholar
20. Park, J.H., Kim, M.G., Jang, H.M., Ryu, S. and Kim, Y. M., Appl. Phys. Lett. 84, 1338 (2004).10.1063/1.1650915Google Scholar
21. Risbud, A.S., Spaldin, N.A., Chen, Z.Q., Stemmer, S. and Seshadri, R., Phy. Rev. B 68, 205202 (2003).10.1103/PhysRevB.68.205202Google Scholar
22. Koidl, P., Phys. Rev. B 15, 2493 (1977).10.1103/PhysRevB.15.2493Google Scholar
23. Srikant, V. and Clarke, D.R., J. Appl. Phys. 81, 6357 (1997).10.1063/1.364393Google Scholar
24. Bundesmann, C., Ashkenov, N., Schuber, M., Spemann, D., Butz, T., Kaidashev, E. M., Lorents, M. and Grundmann, M., Appl. Phys. Lett. 83, 1974 (2003).10.1063/1.1609251Google Scholar
25. Coey, J.M.D., Venkatesan, M. and Fitzgerald, C.B., Nature Materials 4, 173 (2005).10.1038/nmat1310Google Scholar