Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T12:45:01.201Z Has data issue: false hasContentIssue false

Compositional and structural studies of amorphous GaN grown by ion-assisted deposition

Published online by Cambridge University Press:  21 March 2011

U. D. Lanke
Affiliation:
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
A. Koo
Affiliation:
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
B. J. Ruck
Affiliation:
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
H. K. Lee
Affiliation:
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand Department of Physics, Kangwon National University, Chunchon, Korea
A. Markwitz
Affiliation:
Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand
V. J. Kennedy
Affiliation:
Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand
M. J. Ariza
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques UMR CNRS 5072, Université Montpellier II, Montpellier, France
D. J. Jones
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques UMR CNRS 5072, Université Montpellier II, Montpellier, France
J. Rozière
Affiliation:
Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques UMR CNRS 5072, Université Montpellier II, Montpellier, France
A. Bittar
Affiliation:
Measurement Standards Laboratory, Industrial Research Limited, Lower Hutt, New Zealand
H. J. Trodahl
Affiliation:
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
Get access

Abstract

Amorphous GaN films have been deposited onto various substrates by ion-assisted deposition. The films were deposited at room temperature using nitrogen ion energies in the range 40-900 eV. Rutherford backscattering spectroscopy and nuclear reaction analysis show that the Ga:N atomic ratio is approximately one for films grown with ion energy near 500 eV; these films have the highest transparency. Films grown with ion energies below 300 eV are Ga rich, and show reduced transparency across the visible. Raman spectroscopy, x-ray diffraction, and transmission electron microscopy confirm the amorphous nature of the films. Annealing studies on a-GaN establish that the films begin to crystallise at a temperature of about 700 C. To investigate the local bonding environment of the Ga or N atoms, we have measured the extended x-ray absorption fine structure (EXAFS) of the transparent GaN films. The EXAFS results indicate that the films are dominated by heteropolar tetrahedral bonding, with a low density of homopolar bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Markoc, H., Materials Science and Engg B 43, 137 (1997).Google Scholar
2. Nakamura, S., Pearton, S., and Fasol, G. The Blue Laser Diode The complete story, II edition, Springer-Verlag, Berlin, 2000.Google Scholar
3. Yagi, S. Appl. Phys. Lett. 76, 345 (2000).Google Scholar
4. Lester, S. D., Ponce, F. A., Craford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
5. Stumm, P. and Drabold, D. A., Phys. Rev. Lett. 79, 677 (1997).Google Scholar
6. Yu, M., and Drabold, D. A., Solid State Commun. 108, 413 (1998).Google Scholar
7. Nonomura, S., Kobayashi, S., Gotoh, T., Hirata, S., Ohmori, T., Itoh, T., Nitta, S., and Morigaki, K., J. Non-Cryst. Solids 198–200, 174 (1996).Google Scholar
8. Kobayashi, S., Nonomura, S., Ohmori, T., Abe, K., Hirata, S., Uno, T., Gotoh, T., and Nitta, S., Appl. Surface Sci. 113/114, 480 (1997).Google Scholar
9. Silva, S. R. P., Almeida, S. A., and Sealy, B. J., Nucl. Instrum. and Methods in Phys. Res. B 147, 388392 (1999).Google Scholar
10. Kench, P.J., Shannon, J.M., Shao, G., Tsakiropoulos, P. and Silva, S.R.P., Nucl. Instrum. and Methods in Phys. Res. B 175–177, 678682 (2001).Google Scholar
11. Kuball, M., Mokhtari, H., Cherns, D., Lu, J., and Westwood, D., Jpn. J. Appl. Phys. 39, L4753 (2000).Google Scholar
12. Lanke, U., Koo, A., Granville, S., Trodahl, H. J., Markwitz, A., Kennedy, J., and Bittar, A. (accepted for publication in International Journal of Modern Physics B).Google Scholar
13. Kennedy, V. J., Markwitz, A., Lanke, U. D., McIvor, A., Trodahl, H. J., and Bittar, A., Nucl. Instrum. and Methods in Phys. Res. (in print).Google Scholar
14. Michalowicz, A. Logiciels pour la Chimie. Société Française de Chimie, Paris, (1991).Google Scholar
15. Bittar, A., Trodahl, H. J., Kemp, N. T., and Markwitz, A., Appl. Phys. Lett. 78, 619 (2001).Google Scholar
16. Bungaro, C., Rapcewicz, K., and Bernholc, J., Phys. Rev. B 61, 6720 (2000).Google Scholar
17. Giehler, M., Ramsteiner, M., Brandt, O., Yang, H., and Ploog, K. H., Appl. Phys. Lett. 67, 733 (1995).Google Scholar
18. Zhang, J. M., Ruf, T., Cardona, M., Ambacher, O., Stutzmann, M., Wagner, J.-M., and Bechstedt, F., Phys. Rev. B 56, 14399 (1997).Google Scholar