Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-08-01T00:02:28.392Z Has data issue: false hasContentIssue false

Cobalt Clusters on a Giant Graphite Lattice

Published online by Cambridge University Press:  15 February 2011

J. Xhie
Affiliation:
University of Hawaii, Department of Physics and Astronomy, 2505 Correa Road, Honolulu, HI 96822
K. Sattler
Affiliation:
University of Hawaii, Department of Physics and Astronomy, 2505 Correa Road, Honolulu, HI 96822
M. Ge
Affiliation:
University of Hawaii, Department of Physics and Astronomy, 2505 Correa Road, Honolulu, HI 96822
N. Venkateswaran
Affiliation:
University of Hawaii, Department of Physics and Astronomy, 2505 Correa Road, Honolulu, HI 96822
Get access

Abstract

Using a scanning tunneling microscope in UHV we have observed anomalous superstructures on highly oriented pyrolytic graphite. We found such structures on three different samples, with hexagonal symmetry in each case but with different lattice constants of 1.7 nm, 3.8 nm and 6.6 nm. These giant lattices can be explained by assuming that the top layer of graphite is slightly rotated. This produces a hexagonal modulation of the electron state density in the first layer. Lattice points in the giant lattice are characterized by high local density of states at the Fermi level. We find that adsorbed cobalt particles occupy the top sites of the giant lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Soler, J. M., Baro, A. M., and Garcia, N., Phys. Rev. Lett. 57, 444 (1986)CrossRefGoogle Scholar
2. Tersoff, J., Phys. Rev. Lett. 57, 440 (1986)CrossRefGoogle Scholar
3. Tomanek, D., Louie, S. G., Mamin, H. J., Abraham, D. W., Thompson, R. E., Ganz, E., and Clarke, J., Phys. Rev. B 35, 7790 (1987)CrossRefGoogle Scholar
4. Xhie, J., Sattler, K., Mueller, U, Venkateswaran, N., and Raina, G., Phys. Rev. B 43, 8917 (1991)CrossRefGoogle Scholar
5. Kuwabara, M., Clarke, D. R., and Smith, D. A., Appl. Phys. Lett. 56, 2396 CrossRefGoogle Scholar
6. Lyding, J. W., Hubacek, J. S., Gammie, G., Skala, S., and Brockenbrough, R., J. Vac. Sci. Technol. A 6 (2), 363 (1988)CrossRefGoogle Scholar
7. Hashizume, T., Kamiya, I., Hasegawa, Y., Sano, N., Sakurai, T., and Pickering, H. W., J. Microsc. 152, 347 (1988)CrossRefGoogle Scholar
8. Buckley, J.E., Wragg, J. L., and White, H.W., J. Vac. Sci. Technol. B 9 (2), 1079 (1991)CrossRefGoogle Scholar
9. Oden, P.I., Thundat, T., Nagahara, L. A., Lindsay, S. M., Adams, G. B., and Sankey, O. F., Surf. Sci. Lett. 254, L454 (1991)Google Scholar
10. Xhie, J., Sattler, K., Venkateswaran, N., and Ge, M., submitted for publicationGoogle Scholar
11. Digital Instruments, Inc., Barbara, Santa, California and McAllister Technical Services, Coeur d'Alene, Idaho, USA Google Scholar
12. Ganz, E., Sattler, K., and Clarke, J., Phys. Rev. Lett. 60, 1856 (1988)CrossRefGoogle Scholar
13. Mueller, U., Sattler, K., Xhie, J., Venkateswaran, N., and Raina, G., J. Vac. Sci. Technol. B 9 (2) 829 (1991)CrossRefGoogle Scholar