Hostname: page-component-788cddb947-t9bwh Total loading time: 0 Render date: 2024-10-10T20:37:11.983Z Has data issue: false hasContentIssue false

Clay-Based Materials for Engineered Barriers : A Review

Published online by Cambridge University Press:  15 February 2011

Alain Lajudie
Affiliation:
Commissariat à I’Energie Atomique - DCC/DESD/SESD - Centre d’Etudes de Fontenay aux Roses - BP6, 92265 Fontenay aux Roses Cedex France
Joël Raynal
Affiliation:
Commissariat à I’Energie Atomique - DCC/DESD/SESD - Centre d’Etudes de Fontenay aux Roses - BP6, 92265 Fontenay aux Roses Cedex France
Jean-Claude Petit
Affiliation:
Commissariat à I’Energie Atomique - DCC/DESD/SESD - Centre d’Etudes de Fontenay aux Roses - BP6, 92265 Fontenay aux Roses Cedex France
Pierre Toulhoat
Affiliation:
Commissariat à I’Energie Atomique - DCC/DESD/SESD - Centre d’Etudes de Fontenay aux Roses - BP6, 92265 Fontenay aux Roses Cedex France
Get access

Extract

The potential importance of backfilling and plugging in underground radioactive waste repositories has led differents research institutions around the world (SKB in Sweden, CEA in France, AECL in Canada, etc.) to carry out extensive studies of swelling clay materials for the development of engineered barriers. These materials, which have to be emplaced in underground conditions, should combine a variety of complementary properties from both the hydro-thermo-mechanical and geochemical viewpoints: impermeability, swelling ability in order to fill all void space, heat transfer and retention capacity for the most noxious radionuclides. For years, the scientific community has acknowledged the fact that smectite clays best exhibit these properties and, thus, most of the research effort has been devoted to this type of materials. The aim of such studies is to try and link the microscopic characteristics of the material (mineralogy, geochemical properties, microstructure, etc.) to its macroscopic behaviour (swelling properties, etc…).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Petit, J.-C.. Le stockage des déchets radioactifs: perspective historique et analyse sociotechnique. PhD thesis. Ecole des Mines de Paris (1993).Google Scholar
2. de Marsily, G., Ledoux, E., Barbreau, A. and Margat, J.. Nuclear Waste disposal: can the geologist guarantee isolation? Science, 197(4303) (1977).Google Scholar
3. Ringwood, A.E.. Safe disposal of high level nuclear reactor wastes. A new strategy. Australian National University Press (1978).Google Scholar
4. KBS. Handling of spent fuel and final storage of vitrified high-level reprocessing wastes. 5 vol., SKBF/KBS, Stockholm (1977).Google Scholar
5. KBS. Handling of spent fuel and final storage of unreprocessed spent nuclear fuel. 2 vol., SKBF/KBS, Stockholm (1978).Google Scholar
6. Lajudie, A., Petit, J.-C. and Toulhoat, P.. Engineered barriers for nuclear waste disposal: a review of short and long-term behaviours, Appl. Geochem (in preparation).Google Scholar
7. Raynal, J.. La barriere ouvragée argileuse de référence frangaise utilisable dans le cadre d’un stockage direct ; synthèse des connaissances. CEA Internal Report, Fontenay-aux-Roses (1994).Google Scholar
8. Müller-Vonmoos, M., Kahr, G.. Mineralogische untersuchungen von Wyoming bentonit MX-80 und Montigel. Nagra Technischer Bericht 83–12 (1983)Google Scholar
9. Villar, M.V., Dardaine, M.. Contribucion a la selection de una arcilla espanola como material de relleno de un almacenamiento de combustible irradiado en roca dura. CEA Internal Report, Fontenay-aux Roses (1990).Google Scholar
10. Quigley, R.M.. Quantitative mineralogy and preliminary pore-water chemistry of candidate buffer and backfill materials for a nuclear fuel waste disposal vault. Technical Report AECL-7827 (1984).Google Scholar
11. Coulon, H.. Propriétés physico-chimiques de sédiments argileux français: contribution au stockage de déchets radioactifs. PhD thesis. Université des Sciences et Techniques de Lille Flandres-Artois (1987).Google Scholar
12. Pusch, R., Nilsson, J., Ramqvist, G.. Final report of the Buffer Mass Test; volume I: Scope, preparative field work and test arrangement. Nagra Technical Report 85–58, (1985).Google Scholar
13. Pusch, R., Karnland, O., Lajudie, A., Decarreau, A.. MX 80 clay exposed to high temperatures and gamma radiation. SKB Technical Report 93–03 (1992).Google Scholar
14. Dixon, D.A., Woodcock, D.R.. Physical and engineering properties of candidate buffer materials. AECL Technical Record 352 (1986)Google Scholar
15. Villar, M.V., Rivas, P.. Hydraulic properties of montmorillonite-quartz and saponite-quartz mixtures. Applied Clay Science, 9, 19 (1994).Google Scholar
16. Geneste, P., Raynal, M., Atabek, R., Dardaine, M., Oliver, J.. Characterization of a French clay barrier and outline of the experimental programme. Engineering Geology, 28, 443454 (1990).Google Scholar
17. Börgesson, L., Hökmark, H., Karnland, O.. Rheological properties of sodium smectite clay. SKB Technical Report 88–30 (1988).Google Scholar
18. Kahr, G., Bucher, F., Mayor, P.A.. Water uptake and swelling pressure in a bentonite based-backfill. Mat. Res. Soc. Symp. Proc., Berlin, Vol 127, 683699 (1989)Google Scholar
19. Gray, M.N., Cheung, S.C.H., Dixon, D.A.. The influence of sand content on swelling pressures and structure developed in statically compacted Nabentonite. AECL Technical Report 7825 (1984)Google Scholar
20. Pusch, R., Borgesson, L., Erlström, M.. Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quartenary clays. SKB Technical Report 87–29, (1987)Google Scholar
21. Brenner, R.P., Jedelhauser, P. Bohrlochversiegelung, P.: konzept und machbarkeitsnachweis. Nagra Technischer Bericht 89–26 (1989).Google Scholar
22. Cheung, S.C.H., Gray, M.N., Dixon, D.A.. Hydraulic and ionic diffusion properties of bentonite-sand buffer materials. Proc. of the Int. Conf. on Coupled Processes Associated with Nuclear Waste Repositories, Berkeley, 393407 (1985)Google Scholar
23. Beziat, A.. Etude experimental de la conductivité thermique de matériaux argileux hautement compactes ; contribution à I’étude du stockage de déchets radioactifs. PhD thesis, Université d’Orléans, (1987)Google Scholar
24. Struder, J., Ammann, W., Meier, P., Müller, C., Glauser, E.. Verfüllen und Versiegeln von Stollen, Schächten und Bohrlöchern. Nagra Technischer Bericht 84–33 (1984).Google Scholar
25. Langmuir, D. and Apted, M. (1992) Mat. Res. Soc. Symp. Proc. Vol. 257 pp 1324 Google Scholar
26. Torstenfelt, B., Andersson, K., Kipatsi, H., Allard, B. and Olofsson, U. (1982) Mat. Res. Soc. Symp. Proc. Vol. 6 pp 295302 Google Scholar
27. LeVot, J.C., Oliver, J., Zelverte, S. (1988) Unpublished CEA report NT SESD 88–05Google Scholar
28. Sato, H., Ashida, T., Kohara, Y. and Yui, M. (1993) Mat. Res. Soc. Symp. Proc. Vol. 294 pp 403408 Google Scholar
29. Ly, J., Gorgeon, L. and LeVot, J.C. (1993). Migration 93 Charleston SC USA Google Scholar