Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-27T19:11:14.920Z Has data issue: false hasContentIssue false

Chemical Bonding and Lattice Mismatch in Semiconductorinsulator Heteroepitaxy: SrF2 on Si(111)

Published online by Cambridge University Press:  28 February 2011

Marjorie A. Olmstead
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720
R. D. Bringans
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The growth of SrF2 on Si(111) is investigated using photoemission spectroscopy and compared to the growth of CaF2 on Si(l11). Both CaF2 and SrF2 have a fluorite lattice structure closely related to silicons diamond lattice structure. However, while the room temperature lattice constant of Si is only 0.6% smaller than that of CaF2, it is 6.8% smaller than that of SrF2. The photoemission results for thin films of SrF2 on Si(111) are very similar to previous measurements of the CaF2-on-Si(111) interface, reflective of strong silicon-cation bonding and the removal of fluorine from the interface. These results indicate that the chemical and electronic driving forces to dissociate the CaF2 or SrF2 molecule at the fluoride-silicon interface dominate over the structural constraints induced by the lattice mismatch.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ishiwara, H. and Asano, T., Appl. Phys. Lett. 40, 66 (1982).Google Scholar
[2] Asano, T. and Ishiwara, H., Appl. Phys. Lett. 42, 517 (1983).Google Scholar
[3] Schowalter, L. J., Fathauer, R. W., Goehner, R. P., Turner, L. G., DeBlois, R. W., Hashimoto, S., Peng, J.-L., Gibson, W. M., and Krusius, J. P., J. Appl. Phys. 58 302 (1985).Google Scholar
[4] Fathauer, R. W. and Schowalter, L. J., Appl. Phys. Lett. 45, 519 (1984).Google Scholar
[5) Ponce, F. A., Anderson, G. B., and O'Keefe, M. A., J. Vac. Sci. Technol. B4, 1121 (1986).CrossRefGoogle Scholar
[6] Batstone, J. L., Phillips, J. M., and Hunke, E. C., Mat. Res. Soc. Symp. Proc., (this volume).Google Scholar
[7] Olmstead, M. A., Urhberg, R. I. G., Bringans, R. D., and Bachrach, R. Z., J. Vac. Sci. Technol. B4, 1123 (1986).Google Scholar
[8] Olmstead, M. A., Bringans, R. D., Uhrberg, R. I. G., and Bachrach, R. Z., Phys. Rev. B31, 7526 (1987); Mat. Res. Soc. Symp. Proc. 24. 195 (1987).Google Scholar
[9) Himpsel, F. J., Hillebrancht, F. U., Hughes, G., Jordan, J. L., Karlsson, U. O., McFeely, F. R., Morar, J. F., and Rieger, D., Appl. Phys. Letm. 43, 596 (1986).Google Scholar
[10] Rieger, D., Himpsel, F. J., Karlsson, U. O., McFeely, F. R., Morar, J. F., and Yarmoff, J. A., Phys. Rev. 34, 7295 (1986).Google Scholar
[11] Liehr, M., Thiry, P. A., Pireaux, J. J., and Caudano, R., Phys. Rev. D334, 7471 (1986).CrossRefGoogle Scholar
[12] Phillips, J. M., Feldman, L. C., Gibson, J. M., and McDonald, M. L., J. Vac. Sci. Technol. B1, 246 (1983); J. M. Gibson and J. M. Phillips, Appl. Phys. Lett. 43, 828 (1983).Google Scholar
[13] Tromp, R. M. and Reuter, M. C., Bull. Amer Phys. Soc. 33, 784 (1988) and private communication.Google Scholar
[14] Krusor, B. K., Biegelsen, D. K., Abelson, J., Yingling, R. D., J. Vac. Sci. Technol., in press.Google Scholar
[15] Satpathy, S. and Martin, R. M., Phys. Rev. B, (to be published).Google Scholar
[16] Kanemaru, S., Ishiwara, H., and Furukawa, S., Mat. Res. Soc. Symp. Proc. 94, 71 (1987); J. Appl. Phys. 6, 1060 (1988).Google Scholar