Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T08:31:47.067Z Has data issue: false hasContentIssue false

Characterization of Crystalline Phases in Fly Ash by Microfocus Raman Spectroscopy

Published online by Cambridge University Press:  25 February 2011

Barry E. Scheetz
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
William B. White
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The laser Raman microprobe was used to interrogate individual fly ash particles as small as 1 μm diameter and record “fingerprint” Raman spectra from both crystalline and non-crystalline components.of the fly ash. When compared to reference patterns of known crystalline phases, the Raman spectra can be used to identify crystalline phases and can give some structural information on other phases. Furthermore, because this method characterizes fly ash particles on an individual basis, correlations to both color and morphology of the particles can be made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Diamond, S., in Effects of Flyash Incorporation in Cement and Concrete, Diamond, S., Ed., Materials Research Society 12 (1981).Google Scholar
2. Scheetz, B.E., White, W.B., and Adar, F., Proc. Conf. on Characterization, Alfred University, Plenum Press (in press).Google Scholar
3. Delhaye, M. and Dhamelincourt, P., J. Raman Spectros. 3, 33 (1975).10.1002/jrs.1250030105Google Scholar
4. Dhamelincourt, P., Wallart, F., Leclercq, M., N'Guyen, A.T., and Landon, D.O., Anal. Chem. 51, 414A (1979).10.1021/ac50039a002Google Scholar
5. Rosasco, G.J. and Simmons, J.H., Amer. Ceram. Soc. Bull. 53, 626 (1974).Google Scholar
6. Rosasco, G.J., in Advances in Infrared and Raman Spectroscopy, Clark, R.J.H. and Hester, R.E., Eds., Hayden & Don, London, 223 (1980).Google Scholar
7. Scheetz, B.E., Strickler, D.W., Grutzeck, M., and Roy, D.M., in Effects of Flyash Incorporation in Cement and Concrete, Diamond, S., Ed., Materials Research Society, 24 (1981).Google Scholar
8. Diamond, S. and Lopez-Flores, F., in Effects of Flyash Incorporation in Cement and Concrete, Diamond, S., Ed., Materials Research Society, 34 (1981).Google Scholar
9. McCarthy, G.J.,Swanson, K.D., Schields, P.J., and Groenewold, G.H., North Dakota Water Resources Res. Inst. Rpt. A-078-NDAK (1983).Google Scholar
10. Scott, J.F. and Porto, S.P.S., Phys. Rev. 161, 903 (1967).10.1103/PhysRev.161.903Google Scholar
11. Dean, K.J., Sherman, W.F., and Wilkinson, G.R., Spectrochim. Acta 38A, 1105 (1982).10.1016/0584-8539(82)80044-5Google Scholar
12. Wilkinson, G.R., in The Raman Effect, Anderson, A., Ed., Marcel Dekker, New York, 811 (1973).Google Scholar
13. Berenblut, B.J., Dawson, P., and Wilkinson, G.R., Spectrochim. Acta 27A, 1849 (1971).10.1016/0584-8539(71)80238-6Google Scholar
14. Montero, S., Schmölz, R., and Haussihl, S., J. Raman Spec. 2, 101 (1974).10.1002/jrs.1250020109Google Scholar
15. Scheetz, B.E., Eysel, W., and White, W.B. (to be published).Google Scholar
16. Conjeaud, M. and Boyer, H., Cement Concrete Res. 10, 61 (1980).10.1016/0008-8846(80)90052-6Google Scholar
17. White, W.B., in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, Karr, C., Ed., Academic Press, New York, 325 (1975).Google Scholar
18. Scheetz, B.E., Ph.D. Dissertation, The Pennsylvania State University (1976).Google Scholar
19. Beattie, I.R. and Gilson, T.R., J. Chem. Soc. (London) A5, 980 (1970).10.1039/j19700000980Google Scholar