Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T13:24:35.304Z Has data issue: false hasContentIssue false

Characterization Of Amorphous Gel To Superconducting Oxide Conversion For Sol-Gel Produced Y1Ba2Cu3O7-x.

Published online by Cambridge University Press:  28 February 2011

G.A. Moore
Affiliation:
Department of Material Science and Engineering, Ceramics Division, Materials Research Laboratory, and Science and Technology Center for Superconductivity, University of Illinois at Urbana-Champaign, 105 S. Goodwin, Urbana, IL 61801
D. Kenzer
Affiliation:
Department of Material Science and Engineering, Ceramics Division, Materials Research Laboratory, and Science and Technology Center for Superconductivity, University of Illinois at Urbana-Champaign, 105 S. Goodwin, Urbana, IL 61801
M. Teepe
Affiliation:
Department of Material Science and Engineering, Ceramics Division, Materials Research Laboratory, and Science and Technology Center for Superconductivity, University of Illinois at Urbana-Champaign, 105 S. Goodwin, Urbana, IL 61801
G. Kordas
Affiliation:
Department of Material Science and Engineering, Ceramics Division, Materials Research Laboratory, and Science and Technology Center for Superconductivity, University of Illinois at Urbana-Champaign, 105 S. Goodwin, Urbana, IL 61801
Get access

Abstract

Alkoxide sol-gel processing of Y1Ba2Cu3O7-x was performed using copper(II) ethoxide, barium methoxyethoxide, and yttrium methoxyethoxide precursors in a methoxyethanol/methy ethyl ketone/toluene solvent system. In situ neutron diffraction experiments were performed on individual precursors and mixed component gels during heat treatment. Phase development and consumption was observed for both the calcination and annealing segments of the heat treatment. Formation of Y1Ba2Cu3O7-x was observed as early as 700°C. CuO, Cu2O, BaCuO, YCu2O5, BaCO3, BaCO4, and YlBa2Cu3O7-x were observed during the conversion/ consolidation reactions to 850°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, RL., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C. W., Phys. Rev. Lett., 58, [9], 908910, (1987).Google Scholar
2. Easterling, K.E., Sorrell, C.C., Bourdillon, A.J., Dou, S.X., Sioggett, G.J., and Macfarlane, J.C., Material Forum, 11, 3042, (1988).Google Scholar
3. Koinuma, H., Fukuda, K., Hashimoto, T., and Fueki, K., Japanese J. of App. Physics, 27, [7], L1216L1218, (1988).Google Scholar
4. Cheung, C. T. and Ruckenstein, E., Mat. Lett., 7 [5,6] 172177, (1988)Google Scholar
5. Roy, R., Science, 238, 16641669 (1987).Google Scholar
6. Hirano, S., Hayashi, T., Miura, M., and Tomonaga, Hiroyuki, Bull. Chem. Soc. Jpn., 62, [3], 888892, (1989).Google Scholar
7. Kramer, S., Wu, K., Kordas, G., Mat. Res. Soc. Symp. Proc., Vol. 99, 323325, (1988).Google Scholar
8. Kramer, S. A., Kordas, G., McMillan, J., Hilton, G.C., and VanHarligen, D.J., Appl.Phys.Lett., 53 [2],156158,(1989).Google Scholar
9. Kramer, S., Moore, G., Kordas, G., Keifer, P.A., and Knight, C.T.G., Mat. Res. Soc. Symp. Proc, 121, 643647, (1988).Google Scholar
10. Moore, G., Kramer, S., Kordas, G., Mat. lett., Vol. 7, 12, 415423, (1989).Google Scholar
11. Jorgensen, J. D., Faber, J. JR., Carpernter, J. M., Crawford, R. K., Haumann, J.R., Hitterman, R.L., Kleb, R., Ostrowki, G.E., Rotaella, F.J., and Worltan, T.G., J.Appl. Cryst. 22, 321, (1989)Google Scholar
12. Hirano, S, Hayashi, T., Baney, R H., Miura, M., Tomonaga, H., Chem. Letters, 665–668,(1988).Google Scholar
13. Fahim, R. B., Zaki, M. I., and Hussien, G. A. M., Powder Technologly, 33, 161165, (1982)Google Scholar
14. Manthiram, A., Winnea, J. S., Sui, A. T., Steinfink, H., and Goodenough, J. B., J. Am. Chem. Soc.,109, 66676669, (1987).Google Scholar