Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-24T10:00:17.852Z Has data issue: false hasContentIssue false

Characteristics of Oxide Layer Grown on Gallium Arsenide Using 2.8-eV Translational Energy Atomic Oxygen

Published online by Cambridge University Press:  25 February 2011

J.B. Cross
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, MS G738 Los Alamos, NM 87545
M.A. Hoffbauer
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, MS G738 Los Alamos, NM 87545
J.D. Farr
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, MS G738 Los Alamos, NM 87545
O.J. Glembocki
Affiliation:
Naval Research Laboratory, Surface and Interface Sciences Branch, Code 6860 Washington, DC 20375-5000
V.M. Bermudez
Affiliation:
Naval Research Laboratory, Surface and Interface Sciences Branch, Code 6860 Washington, DC 20375-5000
Get access

Abstract

Oxide layers that are thick (>200 Å and uniform have been produced on GaAs (110) and (100) by reacting the substrate (Ts<160°C) with high translational energy (1-3 eV) neutral atomic oxygen at flux levels of∼50 monolayers/second. The Ga and As species are formed in their highest oxidation states, which implies formation of either Ga2O3 and As2O5 or GaAsO4. Raman spectroscopy indicates that there is no metallic (amorphous or crystalline) As in the oxide or at the interface between the oxide and substrate and that there is no appreciable oxidation induced disorder of the substrate as is seen in high temperature thermal oxidation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brodsky, M.H., Scientific American (Feb., 1990), p. 68.Google Scholar
2. Ingrey, S., Lau, W.M., and McIntyre, N.S., J. Vac. Sci. Technol. A 4, 984 (1986).Google Scholar
3. Ceballos, I. López de, Muñioz, M.C., Gofii, J.M., and Sacedón, J.L., J. Vac. Sci. Technol. A 4, 1621 (1986).Google Scholar
4. Bertness, K.A., Chiang, T.T., McCants, C.E., Mahowald, P.H., Wahi, A.K., Kendelewicz, T., Lindau, I., and Spicer, W.E., Surf. Sci. 185, 544 (1987).Google Scholar
5. Yu, C.F., Schmidt, M.T., Podlesnik, D.V., and Osgood, R.M. Jr., J. Vac. Sci. Technol. B 5, 1087 (1987).Google Scholar
6. Bertrand, P.A., J. Electrochem. Soc. 132, 973 (1985).Google Scholar
7. Iwasaki, H., Mizokawa, Y., Nishitani, R., and Nakamura, S., Japan. J. Appl. Phys. 18, 1525(1979).Google Scholar
8. Sommer, H., John, W., and Meisel, A., Surf. Sci. 178, 179 (1986).Google Scholar
9. Cross, J.B. and Blais, N.C., Prog. in Astronautics and Aeronautics 116, 143 (1989); J.B. Cross and D.A. Cremers, U.S. Patent 4,780,608 (Oct. 25, 1988).Google Scholar
10. Pianetta, P., Lindau, I., Gamer, C.M., and Spicer, W.E., Phys. Rev. B 18, 2792 (1978).Google Scholar
11. Schwartz, G.P., Gualtieri, G.J., Kammlott, G.W., and Schwartz, B., J. Electrochem. Soc. 126, 1737 (1979).Google Scholar
12. Bertness, K.A., Yeh, J.-J., Friedman, D.J., Mahowald, P.H., Wahi, A.K., Kendelewicz, T., Lindau, I., and Spicer, W.E., Phys. Rev. B 38, 5406 (1988).Google Scholar
13. Singer, I.L., Murday, J.S., and Cooper, L.R., Surf. Sci. 108, 7(1981).Google Scholar
14. Levinsohn, N., Beserman, R., Cytermann, C., Brener, R., Khait, Y.L., Regel, G.K., Musolf, J., Weyers, M., Brauers, A., and Balk, P., Appl. Phys. Letts. 56, 1131 (1990).Google Scholar
15. Martin, R. and Braunstein, R., J. Phys. Chem. Solids 48, 1207 (1987).Google Scholar
16. Grunthaner, P.J., Vasquez, R.P., and Grunthaner, F.J., J. Vac. Sci. Technol. 17, 1045 (1980).Google Scholar