Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.233 Render date: 2022-05-23T03:26:42.944Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Challenges for Sige-Heterotechnology

Published online by Cambridge University Press:  15 February 2011

H. Presting*
Affiliation:
Daimler-Benz Research Center, Dep. F2H/S, Wilhelm-Runge-Str. II, D-89081 Ulm, Tel: 49-731-505-2049, Fax: 505-4102
Get access

Abstract

Heterostructure devices composed of silicon, silicon-germanium or germanium layers have substantially broadened the spectrum of the well established Si microelectronics. The achieved results for devices, such as the SiGe base heterobipolar transistor (SiGe HBT), the n-. and p-channel SiGe modulation doped field effect transistor (SiGe MODFET) and optoelectronic devices (SiGe LED and photodiode) point to the outstanding potential of this novel heterosystem. Today the SiGe HBT is the world fastest Si based transistor with a wide application area from conventional microelectronic applications to microwave power generation in a frequency regime where up to now only III-V semiconductor devices have prevailed. In addition novel SiGe optoelectronic devices, such as SiGe LED and Si/Ge photodetector in the near infrared spectral region (1.3µ) could pave the way for Si based optical interconnect devices monolithically integrated on a Si IC chip (chip to chip coupling). Growth aspects, strain effects, band alignment and novel bandstructure effects in this material system will be reviewed, its effect on the device performance will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Merwe, J.H. van der, Crystal interfaces part II, finite overgrowth, Journal of Applied Physics 34, p. 123–27 (1964); “Structure of epitaxial crystal interfaces,” Surface Science 31, p. 19 8-2 28 (1972)CrossRefGoogle Scholar
2. Matthews, J.W. and Blakeslee, A.E., “Defects in epitaxial multilayersJournal of Crystal Growth 27, p. 118125 (1974)Google Scholar
3. Kasper, E. and Woerner, K., Jour.Electrochem. Society 132, p. 2481–86 (1985); E.Kasper, Jour. de Physique Colloque C4, supplement au n9, Tome 49 C4, p. 347–55 (1988)CrossRefGoogle Scholar
4. Kasper, E. in “Physics and Applications of Quantum Wells and Superlattices”, ed. by Mendez, E.E. and Klitzing, K. von, p. 101, Nato ASI Series B, Vol. 170, Plenum Press, New York (1987);Google Scholar
5. Krömer, H., Proc.IRE 45, p.1535 (1957)CrossRefGoogle Scholar
6. Kasper, E., Kibbel, H., and Konig, U, Mat.Res.Soc.Symp., Proc. 220, 451 (1991)CrossRefGoogle Scholar
7. Gruhle, A., Kibbel, H., Koenig, U., Erben, U., and Kasper, E., IEEE Electron Device Letters EDL-13, p. 206 (1992)CrossRefGoogle Scholar
8. Schueppen, A., Gruhle, A., Erben, U., Kibbel, H. and Koenig, U., Proceedings of the IEDM'94, p.377380 (1994)Google Scholar
9. Schueppen, A. and Gruhle, A., Electronics Letters (1995), to be publishedGoogle Scholar
10. Daembkes, H., Herzog, H.-J., Jorke, H., Kibbel, H., and Kasper, E. IEDM Technical Digest, IEEE New York, p. 708, (1985)Google Scholar
11. Schuberth, G., Schaeffler, F., Besson, M., Abstreiter, G., and Gornik, E., Appl.Phys. Lett. 59, p.3318 (1991)CrossRefGoogle Scholar
12. Fitzgerald, E.A., Xie, Y.H., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J. and Weir, B.E., Appl. Phys. Lett. 59, p. 811, (1991)CrossRefGoogle Scholar
13. Schaeffler, F., Toebben, D., Herzog, H.-J., Abstreiter, G. and Hollaender, B., Science and Technology 7, p. 260 (1991)Google Scholar
14. LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys.Rev.Lett. 66, p.2903 (1991)CrossRefGoogle Scholar
15. Kdnig, U. and Schaffler, F., IEEE'Electron Device Letters 14, p. 205 (1993)Google Scholar
16. Splett, A., Zinke, T., Petermann, K., Kasper, E., Kibbel, H., and Presting, H., IEEE Photonics Technology Letters 6, p.5961 (1994)CrossRefGoogle Scholar
17. Presting, H., Zinke, T., Kibel, H. and Jaros, M., Proc. of 22th ICPS, Vancouver (1994)Google Scholar
18. Karunasiri, R., Park, J.S., and Wang, K., Appl. Phys.Lett. 61, p. 2434 (1992); R. Karunasiri, J.S. Park, K.Wang, and Li-Jen Cheng, A.P. Lett. 59, p. 134 2 (1990)CrossRefGoogle Scholar
19. Hertle, H., Schuberth, G., Gornik, E., Abstreiter, G., and Schaeffler, F., Appl. Phys.Lett. 59, p.2977 (1991)CrossRefGoogle Scholar
20. People, R., Appl. Phys.Lett. 61, p. 1122 (1992)CrossRefGoogle Scholar
21. Fujita, K., Fukatsu, S., Shiraki, Y., Yaguchi, H., and Ito, R., Appl. Phys.Lett. 61, p.210 (1992)CrossRefGoogle Scholar
22. Fromherz, T., “Intersubband Absorption in modulationsdotierten p- Si/SiGe Quantentopfen”, DPG Tagung, Moinster 94Google Scholar
23. Tsaur, B. et al. , Optical Engineering 33, p. 72 (1994)CrossRefGoogle Scholar
24. Lin, T.L. et al. , Appl.Phys.Lett. 62, p.3318 (1993)CrossRefGoogle Scholar
25. Menczigar, U., Abstreiter, G., Kibbel, H., Presting, H., and Kasper, E., Phys. Rev. B47, p.4099 (1993)CrossRefGoogle Scholar
26. Presting, H. and Kibbel, H., Thin Solid Films 222, p. 215 (1992)CrossRefGoogle Scholar
27. Engvall, J.. Olajos, J., Grimmeiss, H.G., Kibbel, H., Presting, H. and Kasper, E., Appl.Phys. Lett. 63, p.491 (1993)CrossRefGoogle Scholar
28. Schmidtchen, J., Splett, A., Schueppert, B., Petermann, K. and Burbach, G., Electronics Letters 27, p. 1486–88 (1991)CrossRefGoogle Scholar
29. Soref, R.A., Schmidtchen, J. and Petermann, K., IEEE Jour. of Quantum Electronics 27, p 1971–74 (1991)CrossRefGoogle Scholar
30. Gnutzmann, U. and Clausecker, K., Appl. Phys. 3, 9 (1974).CrossRefGoogle Scholar
31. Pearsall, T.P., Temkin, H., Bean, J.C. and Luryi, S., IEEE Electron Device Letters EDL-7, p. 330–32 (1986); andCrossRefGoogle Scholar
32. Pearsall, T.P., Beam, E.A., Temkin, H., and Bean, J.C., Electronics Letters 24, p.685–87(1988)CrossRefGoogle Scholar
33. Temkin, H., Bean, J.C., Pearsall, T.P., Olsson, N.A., and Lang, D.V., Appl.Phys.Letters 49, p.155–57 (1986)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Challenges for Sige-Heterotechnology
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Challenges for Sige-Heterotechnology
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Challenges for Sige-Heterotechnology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *