Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-44467 Total loading time: 0.357 Render date: 2021-06-20T05:28:31.305Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Catalytic Properties of Ni3Al Foils for Hydrogen Production

Published online by Cambridge University Press:  26 February 2011

Toshiyuki Hirano
Affiliation:
HIRANO.Toshiyuki@nims.go.jp, National Institute for Materials Science, Fuel Cell Materilas Center, 1-2-1 Sengen, Tsukuba, 305-0047, Japan, 81-29-859-2545, 81-29-859-2501
Corresponding
Get access

Abstract

We have successfully developed thin foils of boron-free Ni3Al (below 100 μm in thickness) by cold rolling, and recently found that the foils exhibit high catalytic activity for methanol decomposition. A little has been known about catalytic activity in Ni3Al. Even more interestingly, the high catalytic activity appears on flat foils whose surface area is very low. This paper provides a review of the characteristic features of the catalytic properties investigated in my group. Methanol was effectively decomposed into H2 and CO over the foils above 713 K. The production rates of H2 and CO increased with an increase of time during the initial period of reaction, indicating that the Ni3Al foils were spontaneously activated under the reaction conditions. Surface analyses revealed that fine Ni particles dispersed on carbon nanofibers formed on the foils during the reaction. The high catalytic performance of the foils can be attributed to the spontaneous formation of this nanostructure during the reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Stoloff, N. S., Int. Mater. Rev., 34, 153(1989).CrossRefGoogle Scholar
2. Harada, H., Yamazaki, M., and Koizumi, Y., Tetsu-to-Hagane (J. Iron and Steel Inst. Japan), 65, 1049(1979).CrossRefGoogle Scholar
3. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkai Shi, 43, 1190(1979).Google Scholar
4. Liu, C. T., White, C. L., and Horton, J. A., Acat Metall., 33, 213(1985).CrossRefGoogle Scholar
5. Liu, C. T. and Sikka, V. K., J. Metall., 38, 19(1986).Google Scholar
6. Demura, M., Suga, Y., Umezawa, O., Kishida, K., George EP, E. P., and Hirano, T., Intermetallics, 9, 157 (2001).CrossRefGoogle Scholar
7. Demura, M., Kishida, K., Suga, Y., and Hirano, T., Metall. Mater. Trans. A, 33A, 2607 (2002).CrossRefGoogle Scholar
8. Demura, M., Kishida, K., Suga, Y., Takanashi, M., and Hirano, T., Scripta Mater., 47, 267 (2002).CrossRefGoogle Scholar
9. Kishida, K., Demura, M., and Hirano, T., Phil. Mag. A, 83, 3029(2003).CrossRefGoogle Scholar
10. Cui, C., Demura, M., Kishida, K., and Hirano, T., J. Mater. Res., 20, 1054(2005).CrossRefGoogle Scholar
11. Kishida, K., Demura, M., Kobayashi, S., Xu, Y., and Hirano, T., Defect and Diffusion Forum, 233–234, 37 (2004).CrossRefGoogle Scholar
12. Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A. P., Xu, Y., and Hirano, T., Mater. Trans., 45, 3177(2004).CrossRefGoogle Scholar
13. Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A. P., Xu, Y., and Hirano, T., Intermetallics, 13, 151(2005).CrossRefGoogle Scholar
14. Chun, D. H., Xu, Y., Demura, M., Kishida, K., Oh, M. H., Hirano, T., and Wee, D. M., Catal. Lett., 106, 71(2006).CrossRefGoogle Scholar
15. Chun, D. H., Xu, Y., Demura, M., Kishida, K., Wee, D. M., and Hirano, T., J. Catal., 243, 99(2006).CrossRefGoogle Scholar
16. Ehrfeld, W., Hessel, V., and Lower, H., New Technology for Modern Chemistry, Wiley-VCH, Weinheim, Germany (2000).Google Scholar
17. Huber, G. W., Shabaker, J. W., and Dumesic, J. A., Science, 300, 2075(2003).CrossRefGoogle Scholar
18. Komatsu, T., Hyodo, S., and Yashima, T., J. Phys. Chem. B, 101, 5565(1997).CrossRefGoogle Scholar
19. Ertl, G., Knozinger, H., and Weitkamp, J., Preparation of Solid Catlysts, Wiley-VCH, Weinheim, Germany (1999), p. 28.CrossRefGoogle Scholar
20. Bokx, P. K. de, Balkende, A. R., Geus, J. W., J. Catal., 117, 467 (1989).Google Scholar
21. Nylund, A. and Olefjord, I., Surf. Interface Anal., 21, 283(1994).CrossRefGoogle Scholar
22. Rodriguez, N. M., Kim, M. S. and Baker, R. T. K., J. Phys. Chem., 98, 13108 (1994).CrossRefGoogle Scholar
23. Otsuka, K., Ogihara, H. and Takenaka, S., Carbon 41, 223 (2003).CrossRefGoogle Scholar
24. Takenaka, S., Kato, E., Tomikubo, Y. and Otsuka, K., J. Catal., 219, 176 (2003).CrossRefGoogle Scholar
25. Balkenede, A.R., de Bokx, P.K., Geus, J.W., Appl. Catal., 30, 47 (1987).CrossRefGoogle Scholar
26. Matsumura, Y., Tode, N., Yazawa, T., Haruta, M., J. Mol. Catal. A-Chem., 99, 183 (1995).CrossRefGoogle Scholar
27. Matsumura, Y., Kuraoka, K., Yazawa, T., Haruta, M., Catal. Today, 45, 191(1998).CrossRefGoogle Scholar
28. Matsumura, Y., Tanaka, K., Tode, N., Yazawa, T., Haruta, M., J. Mol. Catal. A-Chem, 152, 157(2000).CrossRefGoogle Scholar
29. Nakagawa, K., Hashida, T., Kajita, C., Ikenaga, N., Kobayashi, T., Nishitani-Gamo, M., Suzuki, T., Ando, T., Catal. Lett., 80, 161 (2002).CrossRefGoogle Scholar
30. Haerig, M. and Hofmann, S., Appl. Surf. Sci., 125, 99 (1998).CrossRefGoogle Scholar
31. Schumann, E., Schnotz, G., Trumble, K.P. and Rühle, M., Acta Met. Mater. 40, 1311(1992).CrossRefGoogle Scholar
32. Gao, W., Li, Z., Wu, Z., Li, S., He, Y., Intermetallics, 10, 263(2002).CrossRefGoogle Scholar
33. Rodriguez, N.M., Kim, M.S., Baker, R.T.K., J. Phys. Chem., 98, 13108(1994).CrossRefGoogle Scholar
34. Baker, R.T.K., Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd, St. Louis, (1999), p. 932.Google Scholar
35. Baker, R.T.K., Amer. Chem. Soc. Fuel Chem., 41, 521(1996).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Catalytic Properties of Ni3Al Foils for Hydrogen Production
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Catalytic Properties of Ni3Al Foils for Hydrogen Production
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Catalytic Properties of Ni3Al Foils for Hydrogen Production
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *