Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T02:24:01.740Z Has data issue: false hasContentIssue false

Catalytic Performance of Nanostructured Plate-type Cu and Cu-Fe on ZnO Nanorods for Steam Reforming of Methanol

Published online by Cambridge University Press:  31 January 2011

Chien-Cheng Li
Affiliation:
ccli@ms.ntu-ccms.ntu.edu.tw, National Taiwan University, Center for Condensed Matter Sciences, Taipei, Taiwan, Province of China
Ran-Jin Lin
Affiliation:
ranjin-lin@umail.hinet.net, Sing-Fu consulting Co. Ltd, Ping-Dong, Taiwan, Province of China
Li-Chyong Chen
Affiliation:
chenlc@ntu.edu.tw, National Taiwan University, Center for Condensed Matter Sciences, Taipei, Taiwan, Province of China
Kuei-Hsien Chen
Affiliation:
chenkh@pub.iams.sinica.edu.tw, Academia Sinica, Institute of Atomic and Molecular Sciences, Taipei, Taiwan, Province of China
Get access

Abstract

The Cu-type and (Cu-Fe)-type film catalysts have been successfully prepared by the electroless plating on ZnO nanorods/stainless steel substrates. The microstructure features of the (Cu-Fe)-type films are high porosity and plate-type grains. The addition of iron into Cu-type film can improve the reducibility and the stability of the film catalysts. The reduction temperature of the (Cu-Fe)-type film catalysts decreases with increasing the addition of Fe. For Cu-5 at% Fe film, the reduction temperature is in the range of 195°C to 216°C as comparison in the range of 208°C to 233°C of the Cu-type film catalysts.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Agrell, J., Birgersson, H., Boutonnet, M.. J. Power Sources 106, 249 (2002).Google Scholar
2 Lindstriöm, B., Pettersson, L. J., Int. J. Hydrogen Energy 26, 923 (2001).Google Scholar
3 Agrell, J., Boutonnet, M., Fierro, J.L.G., Appl. Catal.,A: Gen. 253, 213 (2003).Google Scholar
4 Kawamura, Y., Ishid, T., Tezuk, W., Igarashi, A, Chemical Engineering Science 63, 5042 (2008).Google Scholar
5 Yaseneva, P., Pavlova, S., Sadykov, V., Moroz, E., Burgina, E., Dovlitova, L., Rogov, V., Badmaev, S., Belochapkin, S. and Ross, J., Catal. Today 138, 175 (2008).Google Scholar
6 Papavasiliou, J., Avgouropoulos, G. and Ioannides, T., Catal. Commun. 5, 231 (2004).Google Scholar
7 Purnama, H., Ressler, T., Jentoft, R.E., Schlögl, H., Schlog, R. and Schomäcker, R., Appl. Catal., A: Gen. 259, 83 (2004).Google Scholar
8 Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K. and Takehira, K., Appl. Catal., A: Gen. 263, 249 (2004).Google Scholar