Hostname: page-component-5d59c44645-ndqjc Total loading time: 0 Render date: 2024-02-20T20:27:44.543Z Has data issue: false hasContentIssue false

Carbon Doping of InGaAs for Device Applications

Published online by Cambridge University Press:  22 February 2011

G.E. Stillman
Affiliation:
University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Microelectronics Laboratory, Urbana, IL
C.M. Colomb
Affiliation:
University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Microelectronics Laboratory, Urbana, IL
M.T. Fresina
Affiliation:
University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Microelectronics Laboratory, Urbana, IL
Get access

Abstract

Carbon has gained wide acceptance as a p-type dopant for GaAs-based device structures due to its low atomic diffusivity. Carbon doping of InGaAs, however, is complicated by the amphoteric nature of C and difficulty in incorporating C efficiently during epitaxial growth. We have achieved hole concentrations as high as 7x1019 cm−3 in CC14-doped InGaAs grown at low temperature by MOCVD. Growth-related issues include the effect of CCl4 on the alloy composition due to etching during growth, and the incorporation of hydrogen, which passivates the C acceptor and reduces the hole concentration during growth and during the post-growth cool-down. The effect of H passivation on minority carrier transport has been characterized by the zero-field time-of-flight technique. High frequency InP/InGaAs HBTs with a C-doped base have been demonstrated with ft = 62 GHz and fmax = 42 GHz, which is comparable to the best performance reported for MOCVD-grown InP/InGaAs HBTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weyers, M., Putz, N., Heinecke, H., Heyen, M., Luth, H., and Balk, P., J. Electron. Mat. 15, 57 (1986).Google Scholar
2. Cunningham, B.T., Haase, M.A., McCollum, M.J., Baker, J.E., and Stillman, G.E., Appl. Phys. Lett. 54, 1905 (1989).Google Scholar
3. Kobayashi, N., Makimoto, T., and Horikoshi, Y., Appl. Phys. Lett. 50, 1435 (1987).Google Scholar
4. Kuech, T.F., Tischler, M.A., Wang, P.J., Scilla, G., Potemski, R., and Cardone, F., Appl. Phys. Lett. 53, 1317 (1988).Google Scholar
5. Kamp, M., Contini, R., Werner, K., Heinecke, H., Weyers, M., Luth, H., and Balk, P., J. Cryst. Growth 95, 154 (1989).Google Scholar
6. Ito, H. and Ishibashi, T., Jpn. J. Appl. Phys. 30, L944 (1991).Google Scholar
7. Abernathy, C.R., Pearton, S.J., Ren, F., Hobson, W.S., Fullowan, T.R., Katz, A., Jordan, A.S., and Kovalchick, J., J. Cryst. Growth 105, 375 (1990).Google Scholar
8. Tokumitsu, E., Shirakashi, J., Qi, M., Yamada, T., Nozaki, S., Konagai, M., and Takahashi, K., Third International Conference on Chemical Beam Epitaxy, Oxford, UK, Sept. 1991, paper G2.Google Scholar
9. Chin, T.P., Kirchner, P.D., Woodall, J.M., and Tu, C.W., Appl. Phys Lett. 59, 2865 (1991).Google Scholar
10. Stockman, S.A., Hanson, A.W., and Stillman, G.E., Appl. Phys. Lett. 60, 2903 (1992).Google Scholar
11. Hanna, M.C., Lu, Z.H., and Majerfeld, A., Appl. Phys. Lett., 58, 164 (1991).Google Scholar
12. Kibbler, A.E., Kurtz, S.R., and Olson, J.M., J. Cryst. Growth 109, 258 (1991).Google Scholar
13. Plass, C., Heinecke, H., Kayser, O., Liith, H., and Balk, P., J. Cryst. Growth 88, 455 (1988).Google Scholar
14. Price, S.J.W., In Comprehensive Chemical Kinetics, edited by Bamford, C.H. and Tipper, C.F.H. (Elsevier, New York, 1972), vol. 4, pp. 197259.Google Scholar
15. Buchan, N.I., Kuech, T.F., Scilla, G., and Cardone, F., J. Cryst. Growth 110, 405 (1991).Google Scholar
16 Cunningham, B.T., Baker, J.E., and Stillman, G.E., Appl. Phys. Lett. 56, 836 (1990).Google Scholar
17. Cunningham, B.T., Baker, J.E., Stockman, S.A., and Stillman, G.E., Appl. Phys. Lett. 56, 1760 (1990).Google Scholar
18. Enquist, P., J. Appl. Phys. 71, 704 (1992).CrossRefGoogle Scholar
19. Stockman, S.A., Hanson, A.W., Lichtenthal, S.M., Fresina, M.T., Höfler, G.E., Hsieh, K.C., and Stillman, G.E., J. Electron. Mater. 21, 1111 (1992).Google Scholar
20. Lovejoy, M.L., Keyes, B.M., Klausmeier-Brown, M.E., Melloch, M.R., Ahrenkiel, R.K., and Lundstrom, M.S., Jpn. J. Appl. Phys, 30, L135 (1991).Google Scholar
21. Colomb, C.M., Stockman, S.A., Gardner, N.F., Curtis, A.P., Stillman, G.E., Low, T.S., Mars, D.E., and Davito, D.B., J. Appl. Phys. 73, 7471 (1993).Google Scholar
22. Rahbi, R., Pajot, B., Chevallier, J., Marbeuf, A., Logan, R.C., and Gavand, M., J. Appl. Phys. 73, 1723 (1993).Google Scholar
23. Dautremont-Smith, W.C., Nabity, J.C., Swaminathan, V., Stavola, M., Chevallier, J., Tu, C.W., and Pearton, S.J.,.Appl. Phys. Lett. 49, 1098 (1986).Google Scholar
24. Zavada, J.M., Voillot, F., Lauret, N., Wilson, R.G., and Theys, B., J. Appl. Phys. 73, 8489 (1993).Google Scholar
25. Colomb, C.M., Stockman, S.A., Jackson, S.L., Gardner, N.F., Varadarajan, S., Hanson, A.W., Fresina, M.T., Curtis, A.P., and Stillman, G.E. (to be published).Google Scholar
26. Hanson, A.W., Stockman, S.A., and Stillman, G.E., IEEE Electron Device Lett., 13, 10 (1992).Google Scholar
27. Nottenburg, R.N., Chen, Y.K., Tanbun-Ek, T., Logan, R.A., and Humphrey, D.A. Appl. Phys. Lett., 55, 171 (1989).Google Scholar