Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T01:29:22.250Z Has data issue: false hasContentIssue false

Calculations of Alloy Phases with a Direct Monte-Carlo Method

Published online by Cambridge University Press:  01 January 1992

J. S. Faulkner
Affiliation:
Alloy Research Center and Department of Physics, Florida Atlantic University, Boca Raton, FL33431
Yang Wang
Affiliation:
Alloy Research Center and Department of Physics, Florida Atlantic University, Boca Raton, FL33431
Eva A. Horvath
Affiliation:
Alloy Research Center and Department of Physics, Florida Atlantic University, Boca Raton, FL33431
G. M. Stocks
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

A method for calculating the boundaries that describe solid-solid phase transformations in the phase diagrams of alloys is described. The method is first-principles in the sense that the only input is the atomic numbers of the constituents. It proceeds from the observation that the crux of the Monte-Carlo method for obtaining the equilibrium distribution of atoms in an alloy is a calculation of the energy required to replace an A atom on site i with a B atom when the configuration of the atoms on the neighboring sites, κ is specified, δHκ(A→B) = EB(κ)−EA(κ).Normally, this energy difference is obtained by introducing interatomic potentials, vij ,into an Ising Hamiltonian, but we calculate it using the embedded cluster method (ECM). In the ECM an A or B atom is placed at the center of a cluster of atoms with the specified configuration κ ,and the atoms on all the other sites in the alloy are simulated by the effective scattering matrix obtained from the coherent potential approximation. The interchange energy is calculated directly from the electronic structure of the cluster. The table of δHκ(A→B)'s for all configurations κ and several alloy concentrations is used in a Monte Carlo calculation that predicts the phase of the alloy at any temperature and concentration. The detailed shape of the miscibility gaps in the palladium-rhodium and copper-nickel alloy systems are shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, J. M., Ducastelle, F., and Gratias, D., Physica 128A, 334 (1984).Google Scholar
2. Gonis, A., Zhang, X. G., Freeman, A. J., Turchi, P., Stocks, G. M., and Nicholson, D. M., Phys. Rev. B 36, 4630 (1987).Google Scholar
3. Dreysse, H., Berera, A., and Wille, L. T., Phys. Rev. B 39, 2442 (1989).Google Scholar
4. Astra, M., Wolverton, C., de Fontaine, D., and Dreysse, H., Phys. Rev. B 44, 4907 and 4914, (1991).Google Scholar
5. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., J. Chem. Phys. 21, 1087(1953).Google Scholar
6. Gonis, A., Butler, W. H., and Stocks, G. M., Phys. Rev. Lett. 50, 1482 (1983); Gonis, A., Stocks, G. M., Butler, W. H., and Winter, H., Phys. Rev. B29, 555 (1984).Google Scholar
7. Soven, P., Phys. Rev. 156, 809 (1967); 178, 1136 (1969).Google Scholar
8. Faulkner, J. S. and Stocks, G. M., Phys. Rev. B21, 3222(1980).Google Scholar
9. Ducastelle, F. and Gautier, F., J. Phys. F 6, 2039 (1978).Google Scholar
10. Sluiter, M. and Turchi, P. E. A., Phys. Rev. B 40, 11215 (1989).Google Scholar
11. Gyorffy, B. L. and Stocks, G. M., Phys. Rev. Lett. 50, 374 (1983).Google Scholar
12. Stocks, G. M., Temmerman, W. M., and Gyorffy, B. L., Phys. Rev. Lett. 41, 339 (1978).Google Scholar
13. Papaconstantopoulos, D. A., Handbook of the Band Structure of Elemental Solids (Plenum Press, New York, 1986).Google Scholar
14. Monte Carlo Methods in Statistical Physics, edited by Binder, K (Springer Verlag, Berlin, 1986).Google Scholar
15. Shield, J. E. and Williams, R. K., Scripta Met. 21, 1475 (1987).Google Scholar
16. Binary Alloy Phase Diagrams edited by Massalski, T. B. (ASM, Metals Park, Ohio, 1986)Google Scholar
17. Jankowski, A. F. and Tsakalakos, T in Alloy Phase Stability edited by Stocks, G. M. and Gonis, A. (NATO-ASI series, Kluwer, Dordrecht, 1987).Google Scholar
18. Schweika, W. in Alloy Phase Stability edited by Stocks, G. M. and Gonis, A. (NATO-ASI series, Kluwer, Dordrecht, 1987).Google Scholar
19. Abe, T., Acta metall. mater. 40, 1951 (1992).Google Scholar
20. Gyorffy, B. L. et al. in Proceedings of NATO Advanced Study Institute “Alloy Phase Stability”, Chania, Crete, Greece, June 12-27, edited by Stocks, G. M. and Gonis, A. (Kluwer Acacemic Publishers, The Netherlands, 1989).Google Scholar
21. Johnson, D. D., Turchi, P. E. A., Sluiter, M., Nicholson, D. M., Pinski, F. J., and Stocks, G. M. in Alloy Phase Stability and Design (Mater. Res. Soc. Proc. 186 1991)p 21.Google Scholar
22. Binder, K., Lebowitz, J. L., Phani, M. K., and Kalos, M. H., Acta Metallurgica 29, 1655 (1981).Google Scholar
23. Harris, J., Phys. Rev. B 31, 1770 (1985).Google Scholar