Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T03:07:01.963Z Has data issue: false hasContentIssue false

Building Stakeholder Confidence by Reducing the Gulf between Experimental Data and Model Predictions in Assessments of Repository Performance

Published online by Cambridge University Press:  17 March 2011

Kaye P. Hart*
Australian Nuclear Science and Technology Organisation, Menai NSW 2234, Australia;
Get access


Confidence in the ability of repository systems to isolate high level wastes from the environment can be strengthened by placing greater reliance on robust designs for the repository system, and by using multiple lines of evidence to demonstrate that parameters, models and predictions developed for the repository are relevant. A particularly useful approach is to demonstrate that models and predictions incorporate processes that have been shown to be important in existing natural systems.

Research Article
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] OECD/NEA, The Environmental and Ethical Basis for Geological Disposal: a Collective Opinion of the Radioactive Waste Committee, OECD/NEA Nuclear Energy Agency, Paris, France (1995) /html/rwm/reports/1995/geodisp/geological-disposal.pdf.Google Scholar
[2] OECD/NEA, The Handling of Timescales in Assessing Post-closure Safety Lessons Learnt from the April 2002 Workshop in Paris, France, NEA No. 4435, OECD/NEA Nuclear Energy Agency, Paris, France (2004) timescales.pdf.Google Scholar
[3] Nagra, Project Opalinua Clay: Safety Report, Demonstration Of Disposal Feasibility For Spent Fuel, Vitrified High-Level Waste And Long-lived Intermediate-level Waste, Nagra Technical Report NTB 02-05 (2002).Google Scholar
[4] Pirlet, V., J. Nucl. Mat., 298, 4754 (2001).Google Scholar
[5] Iseghem, P. Van, Aertsens, M., Gin, S., Deneele, D., Grambow, B., McGrail, P., Strachan, D., Wicks, G. and McMenamin, T., this volume (2004).Google Scholar
[6] Inagaki, Y., Furuya, H., Idemitsu, K. and Arima, T., Prog. Nucl. Energy, 32, 501508 (1998).Google Scholar
[7] Shoesmith, D. W., J. Nucl. Mat., 282, 131 (2000).Google Scholar
[8] OECD/NEA, Safety of Disposal of Spent Fuel, HLW and Long-Lived ILW In Switzerland, An International Peer Review of the Post-Closure Radiological Safety Assessment for Disposal in the Opalinus Clay of the Zürcher Weinland, NEA No. 5568, OECD/NEA Nuclear Energy Agency, Paris, France (2004) Scholar
[9] Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., Nature, 278, 219223 (1979).Google Scholar
[10] McCarthy, G. J., Nucl. Tech., 32, 92 (1977).Google Scholar
[11] Ewing, R. C. and Macfarlane, A., Science, 296, 659660 (2002).Google Scholar
[12] OECD/NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories State-of-the-art Report in Co-Operation with the European Commission, EUR 19964 EN, OECD/NEA Nuclear Energy Agency, Paris, France (2003) Scholar
[13] OECD/NEA, Engineered Barrier Systems (EBS): Design Requirements and Constraints, Workshop Proceedings, Turku, Finland, 26-29 August 2003 (2003).Google Scholar
[14] Smellie, J. A. T. and Karlsson, F., Eng. Geol., 52, 193220 (1999).Google Scholar
[15] Miller, W., Alexander, R., Chapman, N., McKinley, I. and Smellie, J., Geological Disposal of Radioactive Wastes and Natural Analogues, (Pergamon Press, Elsevier Science, New York, 2000).Google Scholar
[16] Kim, J. I., Nucl. Eng. Design, 202, 143155 (2000).Google Scholar
[17] Stumm, W. and Morgan, J. J. (Editors), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley-Interscience publication in Environmental Science and Technology, Series Editors, Schnoor, Jerald L. and Zehnder, Alexander (John Wiley & Sons: New York, 1996).Google Scholar
[18] Payne, T. E., Edis, R., Fenton, B. R. and Waite, T. D., J. Env. Rad. 57, 3555 2001.Google Scholar
[19] Delakowitz, B., Meinrath, G. and Spiegel, W., J. Radioanal. Nucl. Chem. Letters, 213, 109125 (1996).Google Scholar
[20] Jacquier, P., Meier, P. and Ly, J., Appl. Geochem., 16, 8593 (2001).Google Scholar
[21] Poinssot, C., Baleens, B. and Bradbury, M. H., Geochim. Cosmochim. Acta, 63, 32173227 (1999).Google Scholar
[22] McKinley, I. G. and Alexander, W. R., J. Contam. Hydrol. 13, 249259 (1993).Google Scholar
[23] Börjesson, S. and Emrén, A., Comp. & Geosci., 24, 839846 (1998).Google Scholar
[24] Hart, K. P., Reducing the long-term Environmental impact of Wastes Arising from Uranium Mining, in Energy, Waste, and the Environment: A Geological Perspective, (Geological Society, London, in Press).Google Scholar
[25] Bruno, J., Duro, L., Pablo, J. de, Casas, I., Ayora, C., Delgado, J., Gimeno, M. J., Peña, J., Linklater, C., Villar, L. Pérez del and Gómez, P., Chem. Geol., 151, 277291 (1998).Google Scholar
[26] Curti, E., Appl. Geochem., 14, 433445 (1999).Google Scholar
[27] Bruno, J., Duro, L. and Grivé, M., Chem. Geol., 190, 371393 (2002).Google Scholar
[28] Möri, A., Alexander, W. R., Geckeis, H., Hauser, W., Schäfer, T., Eikenberg, J., Fierz, Th., Degueldre, C. and Missana, T., Colloids and Surfaces A: Physicochem. Eng. Aspects, 217, 3347 (2003)Google Scholar
[29] McKinley, I. G., Hagenlocher, I., Alexander, W. R. and Schwyn, B., FEMS Microbiol. Rev., 20, 545556 (1997).Google Scholar
[30] Meike, A. and Stroes-Gascoyne, S., Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository, Atomic Energy of Canada Limited Report AECL-12101 (2000).Google Scholar
[31] Stroes-Gascoyne, S. and King, F., Microbially Influenced Corrosion Issues in High-Level Nuclear Waste Repositories, Proceedings of CORROSION 2002 Research Topical Symposium Microbially Influenced Corrosion (B. Little Chair), NACE International, Houston TX (2002).Google Scholar
[32] West, J. M., McKinley, I. G. and Stroes-Gascoyne, S., Microbial Effects on Waste Repository Materials, Microbiology and Radioactivity, Keith-Roach, M.J. and Livens, F.R., Editors (Elsevier Science, 2002).Google Scholar
[33] West, J. M. and McKinley, I. G., The Geomicrobiology of Radioactive Waste Disposal, The Encyclopedia of Environmental Microbiology, Editor Bitton, G., 26612674 (John Wiley, 2002).Google Scholar
[34] Smellie, J. A. T., Karlsson, F. and Alexander, W. R., J. Contam. Hydrol., 26, 317 (1997).Google Scholar
[35] Crespo, M. T., Villar, L. Pérez del, Quejido, A. J., Sónchez, M., Cózar, J. S. and Fernóndez-Díaz, M., Appl. Geochem., 18, 12511266 (2003).Google Scholar
[36] Gauthier-Lafaye, F., C. R. Phys., 3, 839849 (2002).Google Scholar
[37] Gurban, I., Laaksoharju, M., Madé, B. and Ledoux, E., J. Contam. Hydrol., 61, 247264 (2003).Google Scholar
[38] Quiñones, J., Serrano, J. and Arocas, P. Diaz, J. Nucl. Mat. 298, 6368 (2001).Google Scholar
[39] McKinley, I. G. and Savage, D., J. Contam. Hydrol., 21, 335350 (1996).Google Scholar
[40] McKinley, I. G., Waste Manage. 17, 18 (1997).Google Scholar
[41] OECD/NEA, Establishing and Communicating Confidence in the Safety of Deep Geologic Disposal: Approaches and Arguments, OECD/NEA Nuclear Energy Agency, Paris, France (2002).Google Scholar
[42] Browning, L., Murphy, W. M., Manepally, C. and Fedors, R., Comp & Geosci., 29, 247263 (2003).Google Scholar
[43] Smith, P. A., Alexander, W. R., Kickmaier, W., Ota, K., Frieg, B. and McKinley, I. G., J. Contam. Hydrol., 47, 335348 (2001).Google Scholar