Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T09:32:19.162Z Has data issue: false hasContentIssue false

Borazine Adsorption and Reaction on a Re(0001) Surface

Published online by Cambridge University Press:  21 February 2011

J.-W. He
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843
D. W. Goodman
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843
Get access

Abstract

The interaction of borazine (N3B3H6) with a Re(0001) surface has been studied by low energy electron diffraction (LEED), thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS). It is shown that chemisorbed borazine dissociates into atomic N, B and H on Re(0001) at sample temperatures > 450K. However, borazine is found to decompose to a boron-nitrogen compound when irradiated with a 2 KeY e–beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Heath, P.J., Eur. J. Eng. Educ. 12, 5 (1987); C.C. Sorrell and E.R. McCartney, Mater. Forum 9, 148 (1986).Google Scholar
2.Cotton, F.A. and Wilkinson, G., Advanced Inoraanic Chemistry, (John Wiley & Sons, New York, 1988); W.L. Jolly, The Chemistry of Nitrogen and Nitrogen Compounds, (W.A. Benjamin Inc. New York, 1964.)Google Scholar
3.Wynne, K.J. and Rice, R.W., Ann. Rev. Mater Sci., 14, 297 (1984).Google Scholar
4.Rye, R.R., Kelber, J.A., Kellogg, G.E., Nebesny, K.W. and Lichtenberger, D.L., J. Chem. Phys. 86, 4375 (1987).Google Scholar
5.Doering, J.P., Gedanken, A., Hichcock, A.P., Fischer, P., Moor, J., Olthoff, J.K., Tossell, J., Raghavachari, K. and Robin, M.B., J. Am. Chem. Soc. 108, 3602 (1986).Google Scholar
6.Goodman, D.W., Yates, J.T. Jr., and Peden, C.H.F., Surface Sci. 164, 417 (1985).Google Scholar
7.Haas, G. and Asscher, M., Surface Sci. 191, 75 (1987).Google Scholar
8.He, J.-W. and Goodman, D.W., Surface Sci. 218, 211 (1989).Google Scholar
9.He, J.-W. and Goodman, D.W., J. Phys. Chem., in press.Google Scholar
10.Redhead, P.A., Vacuum 12, 203 (1962).Google Scholar
11.Kelly, D.G., Odriozola, J.A. and Somorjai, G.A., J. Phys. Chem. 91, 5695 (1987).Google Scholar
12.Palmberg, P.W., Riach, G.E., Weber, R.E. and MacDonald, N.C., Handbook of Auger Electron Spectroscopy, (Physical Electronic Industries, 19.)Google Scholar
13.He, J.-W., Moller, P.J. and Chen, J.-R., J. Vac. Sci. Technol. A5, 1456 (1987).Google Scholar
14.Daugy, E., Mathiez, P., Salvan, F., Layet, J.M. and Derrien, J., Surface Sci. 152/153, 1239 (1985).Google Scholar
15.Danielson, L.R., Dresser, M.J., Donaldson, E.E. and Dickinson, J.T., Surface Sci. 71, 599 (1978).Google Scholar
16.Kunimori, K., Kawai, T., Kondow, T., Onishi, T. and Tamaru, K., Surface Sci. 54, 525 (1976).Google Scholar