Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T16:58:41.372Z Has data issue: false hasContentIssue false

Bond-Angle Variation and Microstructure in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

A. J. M. Berntsen
Affiliation:
Dept. of Atomic & Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands.
M. J. Van Den Boogaard
Affiliation:
Dept. of Atomic & Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands.
W. G. J. H. M. Van Sark
Affiliation:
Dept. of Atomic & Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands.
W. F. Van Der Weg
Affiliation:
Dept. of Atomic & Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands.
Get access

Abstract

A series of hydrogenated amorphous silicon (a-Si:H) films was deposited by rf glow-discharge deposition using various processing conditions. We have studied microstructure in the films by means of infrared absorption spectroscopy. Small-angle X-ray scattering measurements were used to determine the microvoid fractions of a few selected samples. Our results show that both the void fraction and the amount of microstructure can be varied either by changing the substrate temperature or by H2 dilution. Bond-angle variation in the films was probed by Raman scattering measurements. The Raman data indicate that the substrate temperature is the main variable that determines the bond-angle variation. We conclude that the presence of microvoids in a-Si:H does not influence the structural disorder of the amorphous matrix surrounding the voids. Our results are in agreement with experimental work on microvoids in a-Si1-xCx:H, and model calculations on voids in a-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shuker, R., Gammon, R. W., Phys. Rev. Lett. 25, 222 (1970).Google Scholar
2. Maley, N., Lannin, J. S., Phys. Rev. B 36, 1146 (1987).Google Scholar
3. Maley, N., Beeman, D., Lannin, J. S., Phys. Rev. B 38, 10611 (1988).Google Scholar
4. Tsu, R., in Disordered Semiconductors, ed. by Kastner, M. A., Thomas, G. A., Ovshinsky, S. R., Plenum Pub. Corp., 479 (1987).Google Scholar
5. Mahan, A. H., Williamson, D. L., Nelson, B. P., Crandall, R. S., Solar Cells 27, 465 (1989).Google Scholar
6. Mahan, A. H., Raboisson, P., Menna, P., Mascarenhas, A., Tsu, R., Solar Cells 24, 195 (1988).Google Scholar
7. Williamson, D. L., Mahan, A. H., Nelson, B. P., Crandall, R. S., Appl. Phys. Lett. 55, 783 (1989).Google Scholar
8. Meiling, H., PhD thesis, Utrecht University, the Netherlands, 1991.Google Scholar
9. van den Boogaard, M. J., Jones, S. J., Chen, Y., Williamson, D. L., to be published.Google Scholar
10. Schubert, M. B., Mohring, H. -D., Zedlitz, R., Bauer, G. H., J. Non-Cryst. Solids, 137&138, 195 (1991).Google Scholar
11. Biswas, R., Kwon, I., Bouchard, A. M., Soukoulis, C. M., Grest, G. S., Phys. Rev B 39, 5101 (1989).Google Scholar
12. Yamaguchi, M., Morigaki, K., J. Non-Cryst. Solids, 137&138 1135 (1991).Google Scholar