Hostname: page-component-797576ffbb-vjhkx Total loading time: 0 Render date: 2023-12-06T05:39:18.631Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Biological Production of Uniform Polypeptides for Optical Applications

Published online by Cambridge University Press:  21 February 2011

Carl W. Lawton
Department of Chemical Engineering, University of Connecticut, Storrs, CT 06269-3139
Herbert E. Klei
Department of Chemical Engineering, University of Connecticut, Storrs, CT 06269-3139
Linda D. Strausbaugh
Department of Molecular and Cell Biology, University of Connecticut, Storrs CT 06269-3125
Robert Crane
Materials Science Group, Wright Patterson Air Force Base, Dayton, OH
Get access


Recent advances in recombinant DNA technology have created the potential for engineering of protein molecules to specific uses beyond those normally considered for biomaterials. This research project has demonstrated the feasibility of producing polypeptides useful for narrow band filters and nonlinear optical applications.

Synthetic genes, ranging in size from 36 to 576 base pairs, have been constructed from oligonucleotides using a restriction doubling technique. The synthetic genes have been inserted into a Protein A fusion expression system. Fused polypeptides from induced cells have been purified by affinity chromatography (IGG), and analyzed by polyacrylamide gel electrophoresis.

Research Article
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Chapoy, L. L., Macromol. 16, 181 (1983).Google Scholar
2. Chen, W. and Foutch, G. L., Biotech. Prog. 5(2), 51 (1989).Google Scholar
3. Fraser, T. H. and Bruce, B. J., Proc. Nat. Acad. Sci., USA 75, 5936 (1978).Google Scholar
4. Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Mirose, T., Kraszewski, A., Itakura, K., and Riggs, A. D.,. Proc. Nat. Acad. Sci. USA 76, 106 (1979).Google Scholar
5. Goeddel, D. V., Heynecker, H. L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D. G., Ross, M. J., Miozzari, G., Crea, R., and Seeburg, P. H., Nature 281, 544 (1979).Google Scholar
6. Khorana, H. G., Science 203, 614 (1979).Google Scholar
7. Doel, M. T., Eaton, M., Cook, E. A., Lewis, H., Patel, T., and Carey, N. H., Nuc. Acids Res. 8, 4575 (1980).Google Scholar
8. Kangas, T. T., Cooney, L. L., and Gomez, R. F., App. Enviro. Micro. 43, 629 (1982).Google Scholar
9. Goldberg, I., Salerno, A., Patterson, T., and Williams, J., Gene 80, 305 (1989).Google Scholar
10. Lawton, C. and Klei, H., (1990). In preparation.Google Scholar
11. Chou, P. and Fasman, G., Annu. Rev. Biochem. 47, 251 (1978).Google Scholar
12. Johnson, W. E. & Crane, R. L., “An Overview of Rugate Filter Technology,” Optical Interference Coatings: 1988 Technical Digest Series, Vol.6., p. 118121, Optical Society of America, Washington, D.C. Google Scholar
13. Southwell, W. H., “Gradient-index antireflective coatings,” Optic Letters, Vol.8, No. 11, 1983, p. 584586.Google Scholar
14. Southwell, W. H., “Spectral response calculations of rugate filters using coupled-wave theory,: Journal of the Optical Society of America, Vol.5, No. 8, 1988, p. 15581564.Google Scholar
15. Levine, B. F. and Bethea, C. B., J. Chem. Phys., 65, 1989 (1976).Google Scholar
16. Meredith, G. R., VanDusen, J. G., and Williams, D. J., Macromol. 15, 1385 (1982).Google Scholar
17. Hochuli, E., Bannwarth, W., Dobeli, D., Gentz, R., and Stuber, D., Bio/Tech. 6(11), 1321 (1988).Google Scholar
18. Maniatis, T., Fritsch, E. F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982).Google Scholar