Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T18:20:02.229Z Has data issue: false hasContentIssue false

Behavior Of The Potential N-Type Dopants P And As In Diamondafter Low Dose Ion Implantation

Published online by Cambridge University Press:  15 February 2011

H. Hofsäss
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
M. Dalmer
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
M. Restle
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
C. Ronning
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
K. Bharuth-Ram
Affiliation:
University of Durban-Westville, Physics Department, P.B. X54001, 4000 Durban, South Africa
H. Quintel
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
The Isolde-Collaboration
Affiliation:
CERN/PPE, CH-1211 Geneva 23, Switzerland
Get access

Abstract

We have studied the lattice sites of P and As impurities in natural IIa diamond after room temperature ion implantation at very low doses of 1011 P/cm2 and ≤ 1013 As/cm2 and subsequent annealing. We implanted radioactive 33P and 73Se/73As probe atoms and used the sensitive emission channeling technique to determine the impurity lattice sites. In this technique the channeling effects of emitted decay electrons are measured for different crystal axes. By comparison with calculated electron emission distributions the fractions of emitter atoms on different lattice sites can be quantitatively determined. After annealing of the implanted samples above 900°C we find high substitutional fractions of 70 ± 10 % for 33P and 55 ± 5 % for 73As.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vavilov, V.S. and Konorova, E.A., Sov. Phys. Usp 19, 301 (1976).Google Scholar
2. Fritsch, E. and Phelps, A.W., Diam. Relat. Mat 2, 70 (1993).Google Scholar
3. Chen, C.F., Chen, S.H., Diam. Relat. Mat. 4, 451 (1995).Google Scholar
4. Prins, J.F., Phys. Rev. B 38, 5576 (1988).Google Scholar
5. Briddon, P.R. and Jones, R., Physica B 185, 179 (1993).Google Scholar
6. Akaishi, M., Kanda, H: and Yamaoka, S., Science 259, 1592 (1993).Google Scholar
7. Isoya, J., Kanda, H., Akashi, M., Morita, Y. and Oshima, T., Diam. Relat. Mater. (1997) (to be published).Google Scholar
8. Prawer, S., Uzan-Saguy, C., Braunstein, G., Kalish, R., Appl. Phys. Lett. 63, 2502 (1993).Google Scholar
9. Kajihara, S.A., Antonelli, A., Bernholc, J. and Car, R., Phys. Rev. Lett. 66, 2010 (1991).Google Scholar
10. Cao, G.Z., Giling, L.J., Alkemade, P.F.A., Diam. Relat. Mat. 4, 775 (1995).Google Scholar
11. Landstrass, M.I., Piano, M.A., Moreno, M.A., McWilliams, S., Pan, L.S., Kania, D.R. and Han, S., Diam. Relat. Mater. 2, 1033 (1993).Google Scholar
12. Rotner, S.M., Rotner, Y.M., Krishchuk, G.V., Khrakovskaya, E.M., Stephanova, N.S., Laptev, V.A., Sov. Phys. Semicond. 17, 128 (1983).Google Scholar
13. Dresselhaus, M.S. and Kalish, R., Ion Implantation in Diamond, Graphite and Related Materials, Springer Series in Materials Science Vol.22 (Springer, Heidelberg, 1992).Google Scholar
14. Hofsäss, H., Dalmer, M., Restle, M., Ronning, C., J. Appl. Phys (1997), (to be published).Google Scholar
15. Allen, M.G., Prawer, S., Jamieson, D.N. and Kalish, R., Appl.Phys.Lett. 63, 2062 (1993).Google Scholar
16. Braunstein, G. and Kalish, R., Appl. Phys. Lett. 38, 416 (1981).Google Scholar
17. Hunn, J.D., Parikh, N.R., Swanson, M.L. and Zuhr, R.A., Diam. Relat. Mat. 2, 847 (1993).Google Scholar
18. Braunstein, G. and Kalish, R., Nucl. Instr. Meth 182/183, 691 (1981).Google Scholar
19. Zhang, Z. H., Nucl. Instr. Meth B 118, (1996).Google Scholar
20. Prins, J.F., Diam. Relat. Mat. 4, 580 (1995).Google Scholar
21. Prins, J.F., Diam. Relat. Mat. 5, (1996), (to be published).Google Scholar
22. Gorbatkin, S.M., Zuhr, R.A., Roth, J., Naramoto, H., J. Appl. Phys. 70, 2986 (1991).Google Scholar
23. Correia, J.G., Marques, J., Alves, E., Forkel-Wirth, D., Jahn, S.G., Restle, M., Dalmer, M., Hofsäss, H., Bharuth-Ram, K., Nucl. Instr. Meth. B, (1997), (to be published).Google Scholar
24. Bharuth-Ram, K., Quintel, H., Restle, M., Ronning, C., Hofsäss, H. and Jahn, S.G., J. Appl. Phys. 78, 5180 (1995).Google Scholar
25. Kajihara, S.A., Antonelli, A., Bernholc, J., Physica B 185, 144 (1993).Google Scholar
26. Jones, R., Lowther, J.E., Goss, J., Appl. Phys. Lett. 69, 2489 (1996)..Google Scholar
27. Hofsäss, H. and Lindner, G., Phys. Rep. 201, 121 (1991).Google Scholar
28. Hofsäss, H., Hyp. Int. 87/88, 247 (1996).Google Scholar
29. Hofsäss, H., Wahl, U. and Jahn, S.G., Hyp. Int. 84, 27 (1994).Google Scholar
30. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Ranges of Ions in Solids, (Pergamon Press, New York, 1985).Google Scholar
31. Kugler, E., Fiander, D., Jonson, B., Haas, H., Przewloka, A., Ravn, H. L., Simon, D. J., Zimmer, K. and the ISOLDE Collaboration, Nucl. Instr. Meth. B 70, 41 (1992).Google Scholar
32. Quintel, H., Bharuth-Ram, K., Hofsäss, H., Restle, M., Ronning, C., Nucl. Instr. Meth. B 118, 72 (1996).Google Scholar
33. Sternschulte, H., Albrecht, T., Thonke, K., Sauer, R., Dalmer, M., Ronning, C., Hofsiiss, H., presented at Diamond Films ‘96, Tours, 1996; Appl. Phys. Lett. (1997), (submitted).Google Scholar